Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photochemical degradation pathways and near-complete defluorination of chlorinated polyfluoroalkyl substances

Abstract

Chlorinated polyfluoroalkyl substances (Clx–PFAS) are an emerging class of pollutants worldwide. Here we demonstrate near-complete defluorination (that is, cleaving most C–F bonds) of diverse Clx–PFAS structures and the reaction mechanisms. First, we used ultraviolet/sulfite to degrade various carboxylic acids (n = 1, 2, 4 and 8 Cl–CnF2nCOO and n = 1, 2 and 3 Cl–(CF2CFCl)nCF2COO) and an ether sulfonic acid surfactant (F-53B, Cl–(CF2)6–O–(CF2)2SO3). The initial reaction with a hydrated electron cleaved the C–Cl bond. The resulting fluorocarbon radicals (CF2– on the terminal and –CF– in the middle) yield C–H or C–SO3, or form a dimer. In particular, we identified a novel reaction pathway with the unexpected HO radical to cleave the C–C bond (for –CF–) and yield –COO. This pathway is critical for rapid and deep defluorination at 90–96% from carboxylic acids and 76% from F-53B. The following treatment with heat/persulfate at pH >12 achieved ~100% overall defluorination from carboxylic acids and 93% from F-53B without producing toxic ClO3 from Cl. This study advances the understanding of PFAS transformation in engineering systems. It also suggests a synergy between molecular design and degradation technology towards sustainable management of fluorochemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures, synthetic schemes and previously elucidated degradation pathways of Clx–PFAS.
Fig. 2: Degradability of ω-ClPFCAs and the comparison with PFCAs and ω-HPFCAs.
Fig. 3: Degradation pathways and transformation products of ω-ClPFCAs.
Fig. 4: Degradability, transformation products and reaction pathways of F-53B.
Fig. 5: Degradability of CTFEOAs and comparison with PFCAs.
Fig. 6: Transformation products and reaction pathways of CTFEOAs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. Source data for all graphs are provided with this paper. Mass spectrometry raw data are available from the corresponding author upon reasonable request.

References

  1. Key, B. D., Howell, R. D. & Criddle, C. S. Fluorinated organics in the biosphere. Environ. Sci. Technol. 31, 2445–2454 (1997).

    Article  CAS  Google Scholar 

  2. Moody, C. A. & Field, J. A. Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environ. Sci. Technol. 34, 3864–3870 (2000).

    Article  CAS  Google Scholar 

  3. Wang, Z., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Ng, C. et al. Addressing urgent questions for PFAS in the 21st century. Environ. Sci. Technol. 55, 12755–12765 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanford, W. & Joyce, R. Polytetrafluoroethylene. J. Am. Chem. Soc. 68, 2082–2085 (1946).

    Article  CAS  Google Scholar 

  6. Haszeldine, R. New general methods for the synthesis of fluoroiodides and fluoroacids. Nature 166, 192–193 (1950).

    Article  CAS  PubMed  Google Scholar 

  7. Barzen-Hanson, K. A. et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ. Sci. Technol. 51, 2047–2057 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Begley, T. et al. Perfluorochemicals: potential sources of and migration from food packaging. Food Addit. Contam. 22, 1023–1031 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Lang, J. R., Allred, B. M., Peaslee, G. F., Field, J. A. & Barlaz, M. A. Release of per- and polyfluoroalkyl substances (PFASs) from carpet and clothing in model anaerobic landfill reactors. Environ. Sci. Technol. 50, 5024–5032 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Eleuterio, H. Polymerization of perfluoro epoxides. J. Macromol. Sci. A 6, 1027–1052 (1972).

    Article  CAS  Google Scholar 

  11. Philips, F. J., Segal, L. & Loeb, L. The application of fluorochemicals to cotton fabrics to obtain oil and water repellent surfaces. Textile Res. J. 27, 369–378 (1957).

    Article  CAS  Google Scholar 

  12. Murray, H. & Milton, B. Terminally branched and terminally monochlorinated perfluorocarboxylic acids. US patent US3232970A (1966).

  13. Barnhart, W., Seffl, R., Wade, R., West, F. & Zollinger, J. Physical and chemical properties of a new series of carboxylic acids, Cl (CF2CFCl)xCF2CO2H. Ind. Eng. Chem. Chem. Eng. Data Series 2, 80–83 (2002).

  14. Lau, C., Butenhoff, J. L. & Rogers, J. M. The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol. Appl. Pharmacol. 198, 231–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Shi, G. et al. Chronic exposure to 6:2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish and disrupted the PPAR signaling pathway in their offspring. Environ. Pollut. 249, 550–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Yao, J. et al. Novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs): occurrence and association with serum biochemical parameters in residents living near a fluorochemical plant in China. Environ. Sci. Technol. 54, 13389–13398 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Gebbink, W. A., Van Asseldonk, L. & Van Leeuwen, S. P. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environ. Sci. Technol. 51, 11057–11065 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McCord, J. & Strynar, M. Identification of per- and polyfluoroalkyl substances in the Cape Fear River by high resolution mass spectrometry and nontargeted screening. Environ. Sci. Technol. 53, 4717–4727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Washington, J. W. et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science 368, 1103–1107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hauptschein, M. & Braid, M. Halogenated organic compounds. US patent US3002031A (1961).

  21. Wang, S. et al. First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. Environ. Sci. Technol. 47, 10163–10170 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Dohany, J. E. Method of preparing high quality vinylidene fluoride polymer in aqueous emulsion. US patent US4360652A (1982).

  23. Perfluoro Sulfonic Acid Group of Shanghai Institute of Organic Chemistry. Perfluoro and polyfluoro sulfonic acids. II. The preparation of some oxapolyfluoroalkane sulfonic acids. Acta Chim. Sinica (in Chinese) 37, 315–324 (1979).

  24. Ti, B., Li, L., Liu, J. & Chen, C. Global distribution potential and regional environmental risk of F-53B. Sci. Total Environ. 640, 1365–1371 (2018).

    Article  PubMed  Google Scholar 

  25. EFSA Panel on Food Contact Materials, Enzymes and Processing Aids. Scientific opinion on the safety evaluation of the substance perfluoro acetic acid, α‐substituted with the copolymer of perfluoro‐1, 2‐propylene glycol and perfluoro‐1, 1‐ethylene glycol, terminated with chlorohexafluoropropyloxy groups, CAS no. 329238–24‐6 for use in food contact materials. EFSA J. 8, 1519 (2010).

  26. DelRaso, N., Auten, K., Higman, H. & Leahy, H. Evidence of hepatic conversion of C6 and C8 chlorotrifluoroethylene (CTFE) oligomers to their corresponding CTFE acids. Toxicol. Lett. 59, 41–49 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, L., Dong, W. & Hou, H. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chem. Phys. Lett. 436, 124–128 (2007).

    Article  CAS  Google Scholar 

  28. Park, H. et al. Reductive defluorination of aqueous perfluorinated alkyl surfactants: effects of ionic headgroup and chain length. J Phys. Chem. A 113, 690–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Li, X. et al. Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. Environ. Sci. Technol. 46, 7342–7349 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Cui, J., Gao, P. & Deng, Y. Destruction of per- and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs): a critical review. Environ. Sci. Technol. 54, 3752–3766 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Bentel, M. J. et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 53, 3718–3728 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Bentel, M. J. et al. Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: reaction mechanisms and system efficiencies at pH 12. Environ. Sci.Technol. Lett. 7, 351–357 (2020).

    Article  CAS  Google Scholar 

  33. Bao, Y., Huang, J., Cagnetta, G. & Yu, G. Removal of F–53B as PFOS alternative in chrome plating wastewater by UV/sulfite reduction. Water Res. 163, 114907 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, J. et al. Defluorination of omega-hydroperfluorocarboxylates (ω-HPFCAs): distinct reactivities from perfluoro and fluorotelomeric carboxylates. Environ. Sci. Technol. 55, 14146–14155 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, Z. et al. Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction. Environ. Sci. Technol. 55, 7052–7062 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Seppelt, K. Trifluoromethanol, CF3OH. Angew. Chem. Int. Ed. Engl. 16, 322–323 (1977).

    Article  Google Scholar 

  37. Rao, D. et al. New mechanistic insights into the transformation of reactive oxidizing species in an ultraviolet/sulfite system under aerobic conditions: modeling and the impact of Mn(II). ACS ES&T Water 1, 1785–1795 (2021).

    Article  CAS  Google Scholar 

  38. Cao, Y., Qiu, W., Li, J., Jiang, J. & Pang, S. Review on UV/sulfite process for water and wastewater treatments in the presence or absence of O2. Sci. Total Environ. 765, 142762 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Buxton, G. V., Greenstock, C. L., Helman, W. P. & Ross, A. B. Critical review of rate constants forÿreactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886 (1988).

    Article  CAS  Google Scholar 

  40. Bentel, M. J. et al. Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: structure–reactivity relationships and environmental implications. Environ. Sci. Technol. 54, 2489–2499 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Hauptschein, M. & Braid, M. Fluorocarbon halosulfates and a new route to fluorocarbon acids and derivatives. I. Polyfluoroalkyl chlorosulfates1. J. Am. Chem. Soc. 83, 2500–2505 (1961).

    Article  CAS  Google Scholar 

  42. Qian, Y. et al. Perfluorooctanoic acid degradation using UV–persulfate process: modeling of the degradation and chlorate formation. Environ. Sci. Technol. 50, 772–781 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, X., Ceja-Navarro, J. A. & Wu, X. Sublethal toxicity of fluorine-free firefighting foams in soil invertebrate Caenorhabditis elegans. Environ. Sci. Technol. Lett. 9, 561–566 (2022).

    Article  CAS  Google Scholar 

  44. Glüge, J. et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 22, 2345–2373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aberlin, M. E. & Bunton, C. A. Spontaneous hydrolysis of sulfonyl fluorides. J. Org. Chem. 35, 1825–1828 (1970).

    Article  CAS  Google Scholar 

  46. Tenorio, R. et al. Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment. Environ. Sci. Technol. 54, 6957–6967 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Wong, G. T. & Zhang, L.-S. Chemical removal of oxygen with sulfite for the polarographic or voltammetric determination of iodate or iodide in seawater. Mar. Chem. 38, 109–116 (1992).

    Article  CAS  Google Scholar 

  48. Neta, P., Huie, R. E. & Ross, A. B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 1027–1284 (1988).

    Article  CAS  Google Scholar 

  49. Menzel, D. W. & Corwin, N. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10, 280–282 (1965).

    Article  Google Scholar 

  50. Liu, J. et al. Reductive defluorination of branched per- and polyfluoroalkyl substances with cobalt complex catalysts. Environ. Sci. Technol. Lett. 5, 289–294 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Strategic Environmental Research and Development Program (ER18-1289 for J.G., Z.L. and J.L., and ER20-1541 for S.C. and Y.M.) and the National Science Foundation (CHE-1709719 for J.L.). S. Wang at Clarkson University provided helpful discussion on the background of F-53B. M. Elsner at the Technical University of Munich provided helpful discussion on the reaction mechanisms.

Author information

Authors and Affiliations

Authors

Contributions

J.G. conducted PFAS degradation experiments, analysed the data and drafted the manuscript; Z.L. conducted PFAS degradation experiments; Z.C., D.R. and C.G. measured and analysed electron paramagnetic resonance data; S.C. and Y.M. assisted in the liquid chromatography high-resolution tandem mass spectrometry analysis; J.H. provided F-53B and discussed the manuscript; J.L. designed and supervised the research, and revised the manuscript.

Corresponding author

Correspondence to Jinyong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Zulin Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–6 and detailed information on materials and methods, and coordinates of the calculated structures.

Source data

Source Data Fig. 1

All numeric values used to generate the plots in Fig. 1.

Source Data Fig. 2

All numeric values used to generate the plots in Fig. 2.

Source Data Fig. 3

All numeric values used to generate the plots in Fig. 3.

Source Data Fig. 4

All numeric values used to generate the plots in Fig. 4.

Source Data Fig. 5

All numeric values used to generate the plots in Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Liu, Z., Chen, Z. et al. Photochemical degradation pathways and near-complete defluorination of chlorinated polyfluoroalkyl substances. Nat Water 1, 381–390 (2023). https://doi.org/10.1038/s44221-023-00046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00046-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing