2203.03535v4 [cs.LG] 15 Oct 2022

arxXiv

Influencing Long-Term Behavior in
Multiagent Reinforcement Learning

Dong-Ki Kim!-3 Matthew Riemer?-3-* Miao Liu?-3
dkkim93@mit.edu mdriemer@us.ibm.com miao.liul@us.ibm.com
Jakob N. Foerster® Michael Everett!-? Chuangchuang Sun!-3
jakob.foerster@eng.ox.ac.uk mfe@mit.edu ccsunl@mit.edu
Gerald Tesauro?®-® Jonathan P. How!3
gtesauro@us.ibm.com jhow@mit.edu
Abstract

The main challenge of multiagent reinforcement learning is the difficulty of learn-
ing useful policies in the presence of other simultaneously learning agents whose
changing behaviors jointly affect the environment’s transition and reward dynamics.
An effective approach that has recently emerged for addressing this non-stationarity
is for each agent to anticipate the learning of other agents and influence the evolu-
tion of future policies towards desirable behavior for its own benefit. Unfortunately,
previous approaches for achieving this suffer from myopic evaluation, considering
only a finite number of policy updates. As such, these methods can only influence
transient future policies rather than achieving the promise of scalable equilibrium
selection approaches that influence the behavior at convergence. In this paper, we
propose a principled framework for considering the limiting policies of other agents
as time approaches infinity. Specifically, we develop a new optimization objective
that maximizes each agent’s average reward by directly accounting for the impact
of its behavior on the limiting set of policies that other agents will converge to.
Our paper characterizes desirable solution concepts within this problem setting and
provides practical approaches for optimizing over possible outcomes. As a result
of our farsighted objective, we demonstrate better long-term performance than
state-of-the-art baselines across a suite of diverse multiagent benchmark domains.

1 Introduction

Learning in multiagent reinforcement learning (MARL) is fundamentally difficult because an agent
interacts with other simultaneously learning agents in a shared environment [1]. The joint learning of
agents induces non-stationary environment dynamics from the perspective of each agent, requiring
an agent to adapt its behavior with respect to potentially unknown changes in the policies of other
agents [2]. Notably, non-stationary policies will converge to a recurrent set of joint policies by the
end of learning. In practice, this converged joint policy can correspond to a game-theoretic solution
concept, such as a Nash equilibrium [3] or more generally a cyclic correlated equilibrium [4], but
multiple equilibria can exist for a single game with some of these Pareto dominating others [5].
Hence, a critical question in addressing this non-stationarity is how individual agents should behave
to influence convergence of the recurrent set of policies towards more desirable limiting behaviors.

Our key idea in this work is to consider the limiting policies of other agents as time approaches
infinity. Specifically, the converged behavior of this dynamic multiagent system is not due to some

IMIT-LIDS 2IBM-Research *MIT-IBM Watson Al Lab “Mila ®University of Oxford

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

arbitrary stochastic processes, but rather each agent’s underlying learning process that also depends
on the behaviors of the other interacting agents. As such, effective agents should model how their
actions can influence the limiting behavior of other agents and leverage those dependencies to shape
the convergence process. This farsighted perspective contrasts with recent work that also considers
influencing the learning of other agents [6—11]. While these approaches show improved performance
over methods that neglect the learning of other agents entirely [12—14], they suffer from myopic
evaluation: only considering a few updates to the policies of other agents or optimizing for the
discounted return, which only considers a finite horizon time of 1/(1—+y) for discount factor -y [15].

Our contribution. With this insight, we make the following primary contributions in this paper:

» Formalization of multiagent non-stationarity (Section 2). We introduce an active Markov game
setting that formalizes MARL with simultaneously learning agents as a directed graphical model and
captures the underlying non-stationarity over time. We detail how such a system eventually converges
to a stationary periodic distribution. As such, the objective is to maximize its long-term rewards over
this distribution and, if each agent maximizes this objective, the resulting multiagent system settles
into a new and general equilibrium concept that we call an active equilibrium.

* Practical framework for optimizing an active Markov game (Section 3). We outline a practical
approach for optimization in this setting, called FUlly Reinforcing acTive influence witH averagE
Reward (FURTHER). Our approach is based on a policy gradient and Bellman update rule tailored to
active Markov games. Moreover, we show how variational inference can be used to approximate the
update function of other agents and support decentralized execution and training.

* Comprehensive evaluation of our approach (Section 4). We demonstrate that our method
consistently converges to a more desirable limiting distribution than baseline methods that either
neglect the learning of others [14] or consider their learning with a myopic perspective [8] in various
multiagent benchmark domains. We also demonstrate that FURTHER provides a flexible framework
such that it can incorporate recent advances in multiagent learning and improve performance in
large-scale settings by leveraging the mean-field method [16].

2 Problem Statement: Active Markov Game

This work studies a general multiagent learning setting, where each agent interacts with other
independently learning agents in a shared environment. Agents in this setting update their policies
based on recent experiences which are affected by the joint actions of all agents. As such, while an
agent cannot directly modify the future policies of other interacting agents, the agent can actively
influence them by changing its own actions. In this section, we first formalize the presence of this
causal influence in multiagent interactions by introducing the new framework of an active Markov
game. We then formalize solution concepts and objectives for learning within this framework. Finally,
we discuss dependence on initial states and policies, detailing choices that we can make to minimize
the impact of these initial conditions on behavior after convergence.

Stationary Markov Game Active Markov Game

Joint Policy
Dynamics

Figure 1: Within the stationary Markov game setting, agents wrongly assume that other agents will
have stationary policies into the future. In contrast, agents in an active Markov game recognize that
other agents have non-stationary policies based on the Markovian update functions.

2.1 Directed Graphical Model of Active Markov Game

We define an active Markov game as a tuple M,, = (Z,S5, A, T, R, O, U); Z={1,...,n} is the
set of n agents; S is the state space; A = x;c7.A" is the joint action space; 7 : S x A S is the
state transition function; R = x;czR" is the joint reward function; ® = x ;70" is the joint policy

parameter space; and U = X ;czU" is the joint Markovian policy update function. We typeset sets in
bold for clarity. Compared to the stationary Markov game that effectively represents MARL with
wrongly assumed stationary policies in the future, the active Markov game considers how policies
change over time (see Figure 1). Specifically, at each timestep ¢, each agent ¢ executes an action at
a current state s; € S according to its stochastic policy ai ~ 7 (-|s;; 0%) parameterized by 6! € ©°.
A joint action a; = {al, a;*} yields a transition from s; to s;.; with probability 7 (s¢+1|s¢, as),
where the notation -¢ indicates all other agents except agent 7. Each agent ¢ then obtains a reward
according to its reward function r! = R*(s;, a;) and updates its policy parameters according to
U0 1107, 7}), where 7} = {s;, @, 7}, s441} denotes agent i’s transition. This process continues
until the convergence of non-stationary policies. Notably, the joint policy update function U is a
function of a¢, which affects the state transitions and rewards, so agent i can actively influence future
joint policies by changing its own behavior. Modeling this influence rather than ignoring it is the
main advantage of using active Markov games rather than the stationary Markov game formalism.

2.2 Solution Concepts in Active Markov Games

The formalism of active Markov games provides a principled framework for each agent to model the
impact of its behavior on joint future policies. In this section, we study the theoretical convergence
properties of an active Markov game and develop relevant terminology that will help us characterize
this convergence. We begin by formalizing the limiting behavior as a stationary periodic distribution.

Definition 1. (Stationary k-Periodic Distribution). The limiting behavior of an active Markov game
can be represented by a stationary periodic probability distribution over the joint space of states and
policies, defined as a stationary conditional distribution with respect to a period of order k:

Mk(870‘807001€) :p(8t2876t:0|507907€) Vt2078780€87079069a (1)

where £=1t%k with % denoting the modulo operation. The stationary k-periodic distribution satisfies
the following property as its time averaged expectation stays stationary in the limit:

1 k£ 1 k£
= > (8041, 0e41150,00,04+1)=— > > pr(se, Oelso, 00, 0) Y m(ae|se; Op)
k iz k=i si 0, az 2

T (sex1l50,a0) U(Opy1|0e,Te) V5011€S,0041€0.

Our notion of a stationary k-periodic distribution provides a flexible representation for characterizing
the limiting distribution, generalizing from fully stationary fixed-point convergence (when k=1) to
the extreme case of totally non-stationary convergence (when k — 00).

Having defined the joint convergence behavior of an active Markov game, we can now develop
an objective that each agent can optimize to maximize its long-term rewards. Our key finding is
that the average reward formulation, developed for single-agent learning [17, 18], is well suited
for studying the limiting behavior of other interacting agents in multiagent learning. In particular,
the average reward formulation maximizes the agent’s average reward per step with equal weight
given to immediate and delayed rewards, unlike the discounted return objective. Once the joint
policy converges to the stationary periodic distribution, rewards collected by this recurrent set of
policies govern each agent’s average reward as ¢t — oo. Thus, optimizing for the average reward in an
active Markov game encourages agents to consider how to influence the limiting set of policies after
convergence rather than transient policies that are only experienced momentarily.

Definition 2. (Active Average Reward Objective). Each agent i in an active Markov game aims to
find policy parameters 0" and update function U* that maximize its expected average reward p* € R:

i 1T so=s, 8o=0,
ma; $,0,U): =max lim E|=> R'(s,a ao.7~7(+|s0.7;00:T), }
g o, O U) = o M B p LRGS0 a0)| T ionr. o
1k)
=max — > > ur(se,0el5,0,0) > w(aelse; 0e)R' (se, ar),
0, U* k 0=1 54,0¢ agp

where 7' denotes the time horizon. It is important to note that Equation (3) has no preference over the
large equivalence class of update functions that eventually converge to an optimal limiting behavior,
and we only require finding an update function in this class even if the convergence rate is slow. This
is advantageous for our discussion to come about solution concepts in active Markov games. However,

in our practical approach to optimization, we also optimize over the transient distribution, pushing
towards solutions with lower regret by modeling our value function based on the differential returns
as in Proposition 2. We also note that even if a single agent maximizes this objective, agents will
not necessarily arrive at any kind of equilibrium. This is because other agents may have sub-optimal
or biased update functions beyond the agent’s control, and a rational agent can potentially seek to
converge to an average reward that is better for it than that of any equilibrium as a result. Additionally,
whether an agent just seeks to optimize its policy or maximize its update function as well depends on
the kind of solution concept that is desired. For example, finding a fixed stationary policy equates to
using an update function that arrives at a fixed point, whereas we can also optimize over the update
function if we seek to find an optimal non-stationary policy as in the meta-learning literature [9, 19].

If all agents maximize the active average reward objective, we arrive at a new and general equilibrium
concept that we call an active equilibrium, where no agents can further optimize its average reward:

Definition 3. (Active Equilibrium). In an active Markov game, an active equilibrium is joint policy
parameters 0* ={0% 0-*} with associated joint update function U* = {U™ , U **} such that:

p(s, 07,07 U U > pi(s, 00,07 UL U™ Viel,seS,00cO UeTUl. (4)

where U? denotes the space of agent i’s update functions. Our active equilibrium definition is related
to non-stationary solution concepts in game theory, such as the non-stationary Nash equilibrium [20],
that search for a sequence of best-response joint policies. However, these non-stationary solutions are
generally intractable to compute due to the unconstrained sequence over the infinite horizon and the
resulting large policy search space size. By contrast, the active equilibrium provides a more refined
and practical notion than these solution concepts by having a constraint on the sequence based on the
update functions. We also note the generality of active equilibrium that it can correspond to other
standard solution concepts as we impose restrictions on relevant variables:

Remark 1. (Connection to Existing Solution Concepts). Stationary Nash [3] and correlated
equilibria [21] are special kinds of active equilibria when k=1 and joint action distributions are
independent and correlated, respectively. Cyclic Nash and cyclic correlated equilibria [4] are also
special cases of an active equilibrium if k > 1, the joint update function is deterministic, and joint
action distributions are independent and correlated, respectively.

2.3 Addressing Sensitivity to Initial Conditions

The recurrent set of converged joint policies is generally dependent on initial states and policies, as
specified by the conditioned initial variables in Equations (1) to (3). This initial condition dependence
implies that there can be instances of poor convergence performance simply due to undesirable initial
states and policies (see Appendix A for an example). In this paper, we address this sensitivity to
initial conditions by considering the stochastically stable periodic distribution, which is a special case
of the stationary periodic distribution. The stochastic distribution describes the limiting joint behavior
when each agent has communicating strategies (i.e., for every pair of policy parameters 6%, 0 € ©°,
6" transitions to #” in a finite number of steps with non-zero probability and vice versa) by adding
noise ¢ to its update function ¢/, and noise € — 0 over time (i.e., lim;_,, U’ =U*). Importantly,
the stochastic distribution provides an important analytical benefit of independent convergence with
respect to the initial conditions. Specifically, assuming communicating state transitions 7, if only
agent ¢’s update function is perturbed, then we arrive at the notion of self-stable periodic distribution:

Definition 4. (Self-Stable Periodic Distribution). Given communicating state transition T, if noise €
is added only to the agent i’s update function U;, we achieve the stationary k-periodic distribution
independent of the initial state and the agent i’s initial policy as € — 0 over time:

1k .
=0 > Hk(80,00|00°,€) > m(ae|se; Oe)
k 0=1 5.,0¢ ayp (5)

T(Se+1|84, ag) U(9g+1 |9¢, Tg) V85+1 GS, 0g+1 €0.

1k
Z Dotk (Se41,0041|00" L+1)=
=1

Similarly, if the full joint update function is perturbed with noise U, this induces a unique stationary
periodic distribution independent of the initial state and initial joint policy:

Definition 5. (Jointly-Stable Periodic Distribution). Given communicating state transition T, if noise
€ is added to the joint update function U, we achieve the same stationary k-periodic distribution

independent of the initial state and the initial policies as ¢ — 0 over time:

k

1
Mk($e+1,94+1|€+1)igézl Z@ ti(se, 0e)l) > m(ag|se; 0s) ©
=15¢,6e ag

T(Serl |Sg7 ae) U(05+1 ‘0@, Te) VS¢+1 ES, 054_1 €0.

&~
™=
A

1
K

Proposition 1. (Uniqueness of Jointly-Stable Periodic Distribution). Given communicating state
transition T and perturbed joint update function with noise U, the jointly-stable periodic distribution
is unique as € — (0 over time.

Proof. See Appendix B for details.]

The jointly-stable periodic distribution is induced in many cases of interest to multiagent
learning, including when all policies employ update functions leveraging the Greedy in the
Limit with Infinite Exploration (GLIE) property [18]: 1) all state-action pairs are visited
infinitely often and 2) as ¢ — oo, the behavior policy converges to the greedy policy.

In particular, a broad class of action exploration or noisy Stationary Periodic Distributions
policy update functions lead to this kind of distribution [22— Self-Stable Periodic Distributions
26]. Indeed, MARL algorithms generally rely on persis- A AR BT
tent exploration and thus satisfy GLIE. Lastly, as demon- e ety
strated in Figure 2, although maximizing over the space Correlated Equilibria

of jointly-stable periodic distributions confines the search
space of stationary periodic distributions, the best possible
active equilibria still lie within this smaller space while
also allowing for optimization robust to initial conditions.
We focus on designing a learning algorithm that can find Figure 2: Venn diagram describing rela-
an equilibrium in the practical and confined search space tionships between the proposed distribu-
of the jointly-stable distributions in the following section. tions and equilibrium concepts.

Nash Equilibria

3 FURTHER: Practical Method for Solving Active Markov Game

In this section, we develop a practical method, called FURTHER, for learning beneficial policies in
the space of the jointly-stable periodic distributions. We first outline a practical version of the average
reward objective and derive its policy gradient. We then detail our model-free implementation that
builds on top of soft actor-critic [27] and variational inference [28] to learn policies that efficiently
optimize for the average reward objective in a decentralized manner.

3.1 Formulation and Policy Gradient Theorem of FURTHER

While the objective in Equation (3) ideally maximizes over the space of update functions and learns
a non-stationary policy, addressing the computational difficulty of long horizon meta-learning still
remains an active area of research [9, 29, 30]. As such, in FURTHER, we take a practical step
forward and learn the optimal fixed point policy that influences joint policy behavior to maximize its
long-term average reward péi €R at a state s €S and policy parameters of other agents 87 € ©@~:

) . 17T . so=s, 05'=07",
max pg:(s,07*) :=max lim E [— S R (s¢,at) U«Z):T’\’ﬂ'(‘|50:T?91)7‘16:TN7T('4|50:T;'06:'7?)7:| , ()
o o1 T=oo t=0 st41~T (|51,04),0, 51 MU (16,7, ")

where the subscript 6 notation denotes the implicit dependence on the learning of agent i’s fixed
stationary policy. As discussed in Section 2.3, a useful result under the jointly-stable periodic
distribution is that the average reward becomes independent of the initial states and policies:

phi(5,07) = phi(s',07Y) = pi, Vs#s 070 #£07. (8)
We now derive the Bellman equation in an active Markov game that defines the relationship between
the value function and average reward.

Proposition 2. (Active Differential Bellman Equation). The differential value function véi represents
the expected total difference between the accumulated rewards from s and % and the average reward

péi [18]. The differential value function inherently includes the recursive relationship with respect to
véi at the next state s' and the updated policies of other agents 07':

S0=s, 06129'1,
aé;T"“‘“’('|50:T?OVL)"IE)?TNW('|50:T?9<;1rj)»

se41~T (s1,a8),05% 4 ~UTH(-10;% 7 %)

=2 (500 (a6)ZT(s, a) > UTHOV|0F,) ©)

a-* Q-

. . T . .
vpi(s,07%) = lim E[> (Ri(se, ae) — pi)

T— o0 +=0

{Ri(s, a) — phi +vhi (s, 0"‘.')}.
Proof. See Appendix C for a derivation.]
Finally, we derive the policy gradient based on the active differential Bellman equation:

Proposition 3. (Active Average Reward Policy Gradient Theorem). The gradient of active average
reward objective in Equation (7) with respect to agent i’s policy parameters 0" is:

1.k

Vi Jo(0') = kZ ,uk,ai(Sz,9e|3)zveiﬁ(a§|8z;9i)z m(agt|se;05°)dp: (se,65% ae), (10)
=1 a; a,”
with g (s, 0%, ae) = ZT(SK-H‘S&CLZ)Z“ Y(055410:% 7,)[Ri(Sz,ae)—Péﬁvéi(Suu923}1)}-
Se+1 923-1
Proof. See Appendix D for a derivation.]

3.2 Soft Actor-Critic Implementation with Variational Inference

Algorithm overview. FURTHER broadly consists of inference and reinforcement learning modules.
In practice, each agent has partial observations about others and cannot directly observe their true
policy parameters @~% and policy dynamics ¢ *. The inference learning module predicts this hidden
information about other agents leveraging variational inference [28] modified for sequential prediction.
The inferred information becomes the input to the reinforcement learning module, which extends the
policy gradient theorem in Equation (10) and learns active average reward policies sample efficiently
by building on the multiagent soft actor-critic (MASAC) framework [14, 27, 31]. We note that
each agent interacts and learns these modules by only observing the actions of other agents, so our
implementation supports decentralized execution and training. We provide further details, including
implementation for k£ > 1 and psuedocode, in Appendix E.

For simplicity, we consider the period k=1 and develop corresponding soft reinforcement learning
optimizations in Equations (12) to (14).

Inference learning module. This module aims to infer the current policies of other agents and
their learning dynamics based on an approximate variational inference [28]. Specifically, we optimise
a tractable evidence lower bound (ELBO), defined together with an encoder p(£;% ,[2;%, 7{; ¢

CHC)
and a decoder p(a;®|s;, 2;%; i), parameterised by ¢Z,. and ¢’.., respectively:

. t . .
‘-7ellbo :Ep(r(’j:t),p(ﬁift\-/—é:t%@gm) Zl IOg p(a’iﬂst/? Z;"; (rb(liec)iDKL((zt' |Tt’—17 ¢enc) ‘ |p(zt')):|) (1 1)
t/=

Reconstruction loss KL divergence

where latent strategies 2;° represents inferred policy parameters of other agents 6;?, the encoder
represents the policy dynamics of other agents U ~* with parameters ¢.., and 7., = {7¢, ..., 74 }
denotes ¢’s transitions up to timestep ¢. We refer to Appendix F for a detailed ELBO derivation. By
optimizing the reconstruction term, the encoder aims to infer accurate next latent strategies of other
agents. Also, by imposing the prior through the KL divergence, where we set the prior to the previous
posterior with initial prior p(£,%) =N (0, I), the inferred policies from the encoder are encouraged to
be sequentially consistent across time (i.e., no abrupt changes in policies of others).

Reinforcement learning module. This module aims to learn a policy that can maximize the
agent’s average reward based on the inferred information about other r agents. Each agent mamtams its
policy (-|s, 27%; 0") parameterized by 6", two g-functions g, (s, 2%, a; 1}) and gj, (s, 27, a; ¥5)

\ B S \ U D
B|(2,1) (0,0) U‘<474> (0,0)
S1(0,0) (1,2) D|(0,0) (&.8) e p i mm i
(a) Bach/Stravinsky (b) Coordination o faCelin =]
Y e e
H T .l I‘.\. .l ?H
H (1371) (7171)
T (_131) (17_1)
(c) Matching Pennies (d) MuJoCo RoboSumo (e) MAgent Battle

Figure 3: (a)-(c) Payoff tables for Bach or Stravinsky (general-sum), coordination (cooperative), and
matching pennies (competitive) games. (d) A competitive RoboSumo domain [19] with two agents
fighting each other. (e) A mixed cooperative-competitive battle domain [32] with 25 vs 25 agents.

paygme;tc;rized by ¢, %, and lea}rnable average reward pgi € R. We train the g-functions and pgi by
minimizing the soft Bellman residual:

J(; (¢157 pél) :E(s,é‘i,awi,s’,ﬁ‘i’)NDi |:<y_qu(57 2_i7 a; ¢lﬁ))2:|7 y:’rﬂ_pél —|—vél(s’, 2_il; i%)) (12)

where $=1, 2, D’ denotes i’s replay buffer, and 1&}3 denotes the target g-network parameters. The
soft value function véi calculates the state value with the policy entropy H and entropy weight «:

vpils 275540 = m(alls, 27563 m (@ s 27 min g (s, 27 as)+ (n (s, 27:67). (13)
Finally, the policy is trained to maximize:

J‘/Z;'(ei):E(S,z”’i,a’i)N’Di[Zﬂ.(a’i|s72_i;0i)512i1n2 qgi(svﬁ_iva;w;})—i_a?{(ﬂ.("&é_i;ai)) - (14
We note that Equations (13) and (14) are for discrete action space, and we detail optimizations for
continuous action space in Appendix E.

Mean-Field FURTHER. FURTHER provides a flexible framework such that it can easily integrate
recent advances in multiagent learning. For example, by reconstructing and predicting the mean
action and latent strategy of neighbor agents in Equation (11), we can incorporate the mean-field
framework to improve performance in large-scale learning settings. Appendix E details the mean-field
version of FURTHER with pseudocode.

4 Evaluation

We demonstrate FURTHER's efficacy on a diverse suite of multiagent benchmark domains. We
refer to Appendix G for experimental details and hyperparameters. The code is available at https:
//bit.ly/3fXArAo, and video highlights are available at https://bit.ly/37IWeb9. The mean and
95% confidence interval computed for 20 seeds are shown in each figure.

Baselines. We compare FURTHER with the following baselines (see Appendix G.2 for details):

* LILI [8]: An approach that considers the learning dynamics of other agents but suffers from
myopic evaluation bias by optimizing the discounted return objective (see Equation (25)).

* MASAC [14]: An approach that extends SAC [27] to a multiagent learning setting by having
centralized critics [12]. This baseline assumes other agents will have stationary policies in the future
and thus neglects their learning (see Equation (26)).

We note that these selected baselines are closely related to FURTHER, optimizing different objectives
with respect to U *. In particular, LILI and MASAC optimize the discounted return objective with and
without modeling U ™*, respectively. As such, our baseline choices enable us to separately analyze the
effect of FURTHER’s novel average reward objective. For completeness, we also consider additional
baselines of an opponent modeling method (DRON) and an incentive MARL method (MOA). These
results are shown in Appendix H.

https://bit.ly/3fXArAo
https://bit.ly/3fXArAo
https://bit.ly/37IWeb9

-0 IBS Comparison against Q-Learner ._ IC Comparison with Self-Play Setting B 60000 IMP Comparison
22 » 2] § 50000
o .y [o
201.75 o o) &
< 7 <7
8150 ol 3 i'-; 10000
T o el z
g e 3
2 1.5 2. 3
I3 &° £ 20000
o 1.00 °
) o0 4 4
s c 2
S 0.75] =
K , . . <3 ‘ ‘ ‘ ‘ e ! : ; . .
0 10000 20000 30000 10000 0 1000 2000 3000 1000 5000 0 200000 400000 600000 800000 1000000
Timestep Timestep Timestep
—— FURTHER LILI —— MASAC —— FURTHER LILI —— MASAC FURTHER vs LILI FURTHER vs MASAC
(@ (b) ©

Figure 4: (a) Convergence in IBS. The FURTHER agent achieves convergence to its optimal pure
strategy Nash equilibrium. (b) Convergence in IC with self-play. The FURTHER team shows better
converged performance than baselines. (¢) A competitive play in IMP between FURTHER and
baseline methods. FURTHER receives higher rewards than LILI and MASAC over time.

Question 1. How do methods perform when playing against a q-learning agent?

We consider playing the iterated Bach or Stravinsky game (IBS; see Figure 3a). This general-sum
game involves conflicting elements with two pure strategy Nash equilibria, where convergence to
(B,B) and (S,S) equilibrium are more preferable from agent i’s and j’s perspective, respectively.
Suppose agent ¢ plays against a naive learner j, such as g-learner [33], whose initial g-values are set
to prefer action (S). In this experimental setting, it is ideal for agent ¢ to change j’s influence behavior
to select (B) such that they converge to ¢’s optimal pure strategy Nash equilibrium of (B,B).

The average reward performance when an agent i, trained with either FURTHER or the baseline
methods, interacts with the g-learner j is shown in Figure 4a. There are two notable observations.
First, the FURTHER agent ¢ consistently converges to its optimal equilibrium of (B,B), while the
LILI agent often converges to the sub-optimal equilibrium of (S,S). The FURTHER agent ¢ learns to
select (B) while j selects (S), receives the worst rewards of zero, and waits until j’s g-value for (S) is
updated to be lower than the g-value for (B). With the limiting view, ¢ learns that the waiting process
is only temporary, and receiving the eventual rewards of 2 by converging to (B,B) is optimal. By
contrast, LILI suffers from myopic evaluation and shows decreased performance upon convergence
because the agent prefers simply converging to the sub-optimal equilibrium rather than waiting
indefinitely. Figure 5a also shows that LILI achieves sub-optimal performance for any value of v and
shows unstable learning as v — 1. Second, FURTHER and LILI outperform the other approach of
MASAC, showing the benefit of considering the active influence on future policies of other agents.

Question 2. Which equilibrium do methods converge to in a self-play setting?

We experiment with a self-play setting in which both agents learn with the same algorithm in an
iterated cooperative (IC) game with identical payoffs (see Figure 3b). This game has two pure strategy
Nash equilibria of (U,U) and (D,D), in which the (D,D) equilibrium Pareto dominates the other.
Figure 4b shows the average reward performance as the training iteration increases. First we find that
LILI performs better than MASAC by considering the learning of agents. However, similar to the
IBS results, we observe that FURTHER consistently converges to the best equilibrium of (D,D) while
the baseline methods can converge to the sub-optimal equilibrium of (U,U) due to the myopic view.

Question 3. How does FURTHER's limiting optimization perform directly against baselines?

We consider FURTHER agent ¢ directly competing against either LILI or MASAC opponent j in
the iterated matching pennies (IMP) game (see Figure 3c). To show that FURTHER has a long-term
perspective and thus can collect more rewards than the opposing method over time, we evaluate using

a metric of relative accumulated reward summed up to the current timestep: »_, ri —r7. Figure 4c
shows that the relative accumulated reward for FURTHER is positive for both settings, meaning
that FURTHER receives higher rewards than LILI and MASAC over time. This result suggests
that FURTHER is more effective than LILI by employing the limiting view via the average reward
formulation. This result also conveys that it is beneficial to consider the underlying learning dynamics
rather than ignoring them because FURTHER can more easily exploit the MASAC opponent and
achieve higher accumulated rewards than when competing against the LILI opponent.

IBS Analysis with Discount Factors Battle Comparison

1004
50

RoboSumo Comparison

800000

o

600000

100000

TD Error
Relative Accumulate Reward
Relative Accumulate Reward

® 500 200000
5004
——
01 T T T T T 0 T T T T T 0
1.0 1.2 1.4 1.6 1.8 2.0 0 25000 50000 75000 100000 125000 150000 0 200000 400000 600000 800000 1000000

Average Reward for Agent i Timestep Timestep

iy =095 7 =099 M~y =09999 4 FURTHER FURTHER vs LILI —— FURTHER vs MASAC FURTHER-MF vs LILI-MF
(2) (b) (©

Figure 5: (a) Convergence performance and corresponding TD errors with varying « in LILI. As
~v— 1, LILI shows unstable learning (i.e., large TD error). (b) A competitive play in the RoboSumo
domain, showing that FURTHER can learn a beneficial behavior in an environment with complex
interactions (c¢) A mixed cooperative-competitive play in the battle domain. FURTHER-MF can solve
a large-scale learning settings.

Question 4. How does FURTHER scale to a more complex environment?

To answer this question, we use the MuJoCo RoboSumo domain ([19]; see Figure 3d), where two
ant robots compete with each other with the objective of pushing the opponent out of the ring. The
reward function consists of a sparse reward of 5 for winning against the opponent and shaped rewards
of moving towards the opponent and pushing the opponent further from the center of the ring. This
environment has complex interactions because an agent must learn how to control its joints with
continuous action space to move around the ring while learning to push the opponent. Similar
to the setup in Question 3, FURTHER agent ¢ directly competes against either LILI or MASAC
opponent j. We note that each agent has only partial observations about its opponent. As such,
an agent infers its opponent’s hidden policies and learning dynamics based on partial observations.
We show the RoboSumo results in Figure 5b. Consistent with our results in the iterated matrix
games, we observe that FURTHER gains more rewards than the baselines over time and wins against
MASAC more often than against LILI. The averaged winning rate across the entire interaction shows
that FURTHER wins against LILI and MASAC with 60.6% and 63.9%, respectively. Therefore,
FURTHER provides a scalable framework that can learn policies in an environment with complex
interactions and continuous action space.

Question 5. How does FURTHER scale to a large number of agents?

Finally, we show the scalability of our method regarding the number of agents using the battle domain
([32]; see Figure 3e). In this large-scale mixed cooperative-competitive setting, a red team of 25
agents and a blue team of 25 agents interact in a gridworld, where each agent collaborates with its
teammates to eliminate the opponents. Specifically, we compare when red and blue agents learn with
the mean-field version of FURTHER (i.e., FURTHER-MF) and LILI (i.e., LILI-MF), respectively,
where they predict the mean actions of neighboring agents. We note that all 50 agents learn in a
decentralized manner without sharing parameters with one another. It is evident that FURTHER-MF
outperforms LILI-MF, which shows the effectiveness of having the limiting perspective. This result
also conveys that FURTHER can easily incorporate other techniques in multiagent learning and show
improved performance in large-scale settings.

5 Related Work

Stationary MARL. The standard approach for addressing non-stationarity in MARL is to consider
information about other agents and reason about joint action effects [34]. Example frameworks
include centralized training with decentralized execution, which accounts for the actions of other
agents through a centralized critic [12—-14, 16, 35-37]. Other related approaches include opponent
modeling frameworks that infer opponent policies and condition an agent’s policy on this inferred
information about others [38—41]. While this does alleviate non-stationarity, each agent learns its
policy by assuming that other agents will follow the same policy into the future. This assumption
is incorrect because other agents can have different behavior in the future due to their learning [6],
resulting in instability with respect to their changing behavior. In contrast, FURTHER models the
learning processes of other agents and considers how to actively influence limiting behavior.

Learning-aware MARL. Our framework is closely related to prior work that considers the learning
of other agents in the environment. The framework by [42], for instance, learns the best response
adaptation to the other agent’s anticipated updated policy. Notably, LOLA [6] and its more recent
improvements [7, 43] study the impact of behavior on one or a few of another agent’s policy updates.
Our work is also related to frameworks that leverage the inferred policy dynamics of other agents to
impact their future policies by maximizing the discounted return objective [8, 10]. Meta-learning
frameworks are also related that directly account for the non-stationary policy dynamics in multiagent
settings based on the inner-loop and outer-loop optimization [9, 11, 19, 44]. Lastly, the field of
incentive MARL [45-48] is related, where agents additionally optimize incentive rewards and learn
successful policies in solving sequential social dilemma domains [49, 50]. However, all of these
approaches only account for a finite number of updates to the policies of other agents, so we observe
that these methods can converge to a less desirable solution. FURTHER addresses this issue by
optimizing for the average reward objective in the active Markov game setting.

Game-theoretic MARL. Another effective approach to addressing the non-stationarity is learning
equilibrium policies that correspond to game-theoretic solution concepts [4, 51-54]. These frame-
works predict stationary joint action values by the end of learning and can guarantee convergence to
Nash [3] or correlated [21] equilibrium values under certain assumptions. However, as noted in [55],
this convergence is guaranteed only while ignoring the actual learning dynamics of other agents, and
each agent assumes all agents will play the same joint equilibrium strategy. As such, equilibrium
learners can fail to learn best-response policies when others choose to play different equilibrium
strategies in the future as a result of their learning. By contrast, FURTHER considers convergence to
a recurrent set of joint policies by inferring the true policy dynamics of other agents.

6 Conclusion

In this paper, we have introduced FURTHER to address non-stationarity by considering each agent’s
impact on the converged policies of other agents. The key idea is to consider the limiting policies
of other agents through the average reward formulation for a newly proposed active Markov game
framework, and we have developed a practical model-free and decentralized approach in this setting.
We evaluated our method on various multiagent settings and showed that FURTHER consistently
converges to more desirable long-term behavior than state-of-the-art baseline approaches.

Acknowledgments

Research funded by IBM (as part of the MIT-IBM Watson Al Lab initiative).

References

[1] Lucian Busoniu, Robert Babuska, and Bart De Schutter. Multi-agent Reinforcement Learning:
An Overview, pages 183-221. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[2] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V. Albrecht. Dealing
with non-stationarity in multi-agent deep reinforcement learning. CoRR, abs/1906.04737, 2019.

[3] John F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36(1):48-49, 1950.

[4] Martin Zinkevich, Amy Greenwald, and Michael Littman. Cyclic equilibria in markov games.
In Neural Information Processing Systems (NeurIPS), volume 18. MIT Press, 2006.

[5] Ann Nowé, Peter Vrancx, and Yann-Michaél De Hauwere. Game Theory and Multi-agent
Reinforcement Learning, pages 441-470. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[6] Jakob Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. In International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), page 122—-130, Richland, SC, 2018.

[7] Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktischel, and Shimon Whiteson.
Stable opponent shaping in differentiable games. In International Conference on Learning
Representations (ICLR), 2019.

10

[8] Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent
representations to influence multi-agent interaction. In Conference on Robot Learning (CoRL),
2020.

[9] Dong Ki Kim, Miao Liu, Matthew D Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz
Habibi, Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan How. A policy gradient algorithm
for learning to learn in multiagent reinforcement learning. In International Conference on
Machine Learning (ICML), volume 139, pages 5541-5550. PMLR, 18-24 Jul 2021.

[10] Woodrow Zhouyuan Wang, Andy Shih, Annie Xie, and Dorsa Sadigh. Influencing towards
stable multi-agent interactions. In Conference on Robot Learning (CoRL), 2021.

[11] Christopher Lu, Timon Willi, Christian A Schroeder De Witt, and Jakob Foerster. Model-free
opponent shaping. In International Conference on Machine Learning (ICML), volume 162 of
Proceedings of Machine Learning Research, pages 14398-14411. PMLR, 2022.

[12] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Neural Information
Processing Systems (NeurIPS), pages 6382—-6393, 2017.

[13] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. Association for the Advancement of Artificial
Intelligence (AAAI), 32(1), Apr. 2018.

[14] Shariq Igbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In
International Conference on Machine Learning (ICML), volume 97, pages 2961-2970. PMLR,
09-15 Jun 2019.

[15] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2), 2002.

[16] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field
multi-agent reinforcement learning. In International Conference on Machine Learning (ICML),
volume 80, pages 5571-5580, 10-15 Jul 2018.

[17] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., USA, 1st edition, 1994.

[18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

[19] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter
Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive environments.
In International Conference on Learning Representations (ICLR), 2018.

[20] Constantinos Daskalakis, Noah Golowich, and Kaiqing Zhang. The complexity of markov
equilibrium in stochastic games. CoRR, abs/2204.03991, 2022.

[21] RobertJ. Aumann. Correlated equilibrium as an expression of bayesian rationality. Economet-
rica, 55(1):1-18, 1987.

[22] Dean Foster and Peyton Young. Stochastic evolutionary game dynamics. Theoretical Population
Biology, 38(2):219-232, 1990.

[23] ML.L Freidlin, J. Sziics, and A.D. Wentzell. Random Perturbations of Dynamical Systems.
Grundlehren der mathematischen Wissenschaften. Springer, 2012.

[24] Georgios Chasparis and Jeff S. Shamma. Distributed dynamic reinforcement of efficient
outcomes in multiagent coordination and network formation. Dynamic Games and Applications,
2(1):18-50, 2012.

[25] Georgios C. Chasparis. Stochastic stability of perturbed learning automata in positive-utility
games. IEEE Transactions on Automatic Control, 64(11):4454-4469, 2019.

11

[26] John R. Wicks and Amy Greenwald. An algorithm for computing stochastically stable distribu-
tions with applications to multiagent learning in repeated games. In Conference on Uncertainty
in Artificial Intelligence (UAI), UAT’ 05, page 623—632, 2005.

[27] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning (ICML), volume 80, pages 1861-1870. PMLR, 2018.

[28] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859-877, Apr 2017.

[29] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. Neural Information Processing Systems (NeurIPS), 32, 2019.

[30] Tristan Deleu, David Kanaa, Leo Feng, Giancarlo Kerg, Yoshua Bengio, Guillaume Lajoie, and
Pierre-Luc Bacon. Continuous-time meta-learning with forward mode differentiation. arXiv
preprint arXiv:2203.01443, 2022.

[31] Petros Christodoulou. Soft actor-critic for discrete action settings. CoRR, abs/1910.07207,
2019.

[32] Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang, and Yong Yu.
Magent: A many-agent reinforcement learning platform for artificial collective intelligence. In
Association for the Advancement of Artificial Intelligence (AAAI), 2018.

[33] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pages
279-292, 1992.

[34] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote. A survey
of learning in multiagent environments: Dealing with non-stationarity. CoRR, abs/1707.09183,
2017.

[35] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer, Christopher
Amato, Murray Campbell, and Jonathan P. How. Learning to teach in cooperative multiagent
reinforcement learning. In Association for the Advancement of Artificial Intelligence (AAAI).
AAAI Press, 2019.

[36] Samir Wadhwania, Dong-Ki Kim, Shayegan Omidshafiei, and Jonathan P. How. Policy distilla-
tion and value matching in multiagent reinforcement learning. In International Conference on
Intelligent Robots and Systems (IROS), pages 8193-8200, 2019.

[37] Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew Riemer, Golnaz
Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and Jonathan P. How. Learning hier-
archical teaching policies for cooperative agents. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), AAMAS ’20, page 620-628, Richland, SC, 2020.
International Foundation for Autonomous Agents and Multiagent Systems.

[38] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep
reinforcement learning. In International Conference on Machine Learning (ICML), volume 48,
pages 1804—1813, 20-22 Jun 2016.

[39] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself
in multi-agent reinforcement learning. In International Conference on Machine Learning
(ICML), volume 80, pages 42574266, 10-15 Jul 2018.

[40] Aditya Grover, Maruan Al-Shedivat, Jayesh Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International Conference on Machine Learning
(ICML), volume 80, pages 1802—1811, 10-15 Jul 2018.

[41] Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning
for multi-agent reinforcement learning. In International Conference on Learning Representa-
tions (ICLR), 2019.

12

[42] Chongjie Zhang and Victor R. Lesser. Multi-agent learning with policy prediction. In Associa-
tion for the Advancement of Artificial Intelligence (AAAI), 2010.

[43] Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktédschel, Eric Xing, and
Shimon Whiteson. DiCE: The infinitely differentiable Monte Carlo estimator. In International
Conference on Machine Learning (ICML), volume 80, pages 1524-1533. PMLR, 2018.

[44] Jan Balaguer, Raphael Koster, Christopher Summerfield, and Andrea Tacchetti. The good
shepherd: An oracle agent for mechanism design. arXiv preprint arXiv:2202.10135, 2022.

[45] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega,
Dj Strouse, Joel Z. Leibo, and Nando De Freitas. Social influence as intrinsic motivation
for multi-agent deep reinforcement learning. In International Conference on Machine Learning
(ICML), volume 97, pages 3040-3049. PMLR, 2019.

[46] Jane X. Wang, Edward Hughes, Chrisantha Fernando, Wojciech M. Czarnecki, Edgar A.
Duéiiez Guzman, and Joel Z. Leibo. Evolving intrinsic motivations for altruistic behavior.

In International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), page
683-692, Richland, SC, 2019.

[47] Jiachen Yang, Ang Li, Mehrdad Farajtabar, Peter Sunehag, Edward Hughes, and Hongyuan
Zha. Learning to incentivize other learning agents. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Neural Information Processing Systems (NeurIPS), volume 33,
pages 15208-15219. Curran Associates, Inc., 2020.

[48] Jiachen Yang, Ethan Wang, Rakshit Trivedi, Tuo Zhao, and Hongyuan Zha. Adaptive incentive
design with multi-agent meta-gradient reinforcement learning. In International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), page 1436-1445, Richland, SC, 2022.

[49] Joel Z. Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-
agent reinforcement learning in sequential social dilemmas. In International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), page 464—473, Richland, SC, 2017.
International Foundation for Autonomous Agents and Multiagent Systems.

[50] Weixun Wang, Jianye Hao, Yixi Wang, and Matthew Taylor. Achieving cooperation through
deep multiagent reinforcement learning in sequential prisoner’s dilemmas. In International
Conference on Distributed Artificial Intelligence (DAI), 2019.

[51] Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
International Conference on Machine Learning (ICML), pages 157—-163. Morgan Kaufmann
Publishers Inc., 1994.

[52] Michael L. Littman. Friend-or-foe g-learning in general-sum games. In International Confer-
ence on Machine Learning (ICML), page 322-328, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[53] Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play an optimal nash
equilibrium in team markov games. In Neural Information Processing Systems (NeurIPS), page
1603-1610. MIT Press, 2002.

[54] Amy Greenwald and Keith Hall. Correlated-Q learning. In International Conference on Machine
Learning (ICML), page 242-249. AAAI Press, 2003.

[55] Michael Bowling. Convergence and no-regret in multiagent learning. In Neural Information
Processing Systems (NeurIPS), pages 209-216. MIT Press, 2005.

[56] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. In International Conference on Learning Representations (ICLR), 2020.

[57] He He, Jordan L. Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep
reinforcement learning. CoRR, abs/1609.05559, 2016.

[58] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix I.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Ap-
pendix L.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendices B
to D and F.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix G.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The mean and 95% confidence interval computed for 20
seeds are shown in each figure.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix G.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Example of Initial Condition Sensitivity

nalysis for Gree earnin nalysis for earnin
IPD Analysis for Greedy L g IPD Analysis for GLIE L g
=R 'U.() =R F().()
o - 0.5 %) 0.5
~ 0 | I ~ 0 | e
=] P o
s ~1.0% s ~1.0%
[@ Q [
29! 158 251 SEF:
5 g, & g,
- —20 @ - —20 @
[CIToN [[CToN [
B A > B A >
€ —25< £ -25%
IS5] ;] . -=3.0 RS] i] i —3.0
=20 -15 -10 5 0 =20 -15 -10 5 0

Initial g-value for (D) Initial g-value for (D)
(@ (b)
Figure 6: (a) A policy iteration analysis in IPD when agent j has a greedy learning algorithm.
Depending on 63°, i’s possible maximum average reward is affected. (b) A policy iteration analysis
in IPD when agent j has a GLIE learning algorithm. The possible maximum average reward for
agent ¢ is independent to j’s initial policy 6,°.

Consider playing the iterated prisoner’s dilemma (IPD) game (see Table 1), where agent ¢
plays against a g-learning agent j. We perform a policy iteration analysis [17] with respect to
j’s varying initial g-values for each action 0g°*. Figure 6a and Fig-

ure 6b show agent i’s average reward after convergence with respect e D
to 85" when j trains with a greedy and GLIE algorithm, respectively.
Interestingly, the analysis with the greedy algorithm shows that ¢’s ¢ (L-1) (-3,0)

average reward depends on 8¢ in IPD, where there is a set of j’s D] (0,-3) (-2-2)
initial policies that ¢ can achieve the high average reward, but there Table 1: Prisoner’s dilemma
is the other set of initial policies that can result in the undesirable game payoff matrix. ‘
average reward of -2. By contrast, Figure 6b shows that i’s average reward is independent of 6¢*
when j’s learning satisfies GLIE, empirically supporting our discussion in Section 2.3.

B Uniqueness of Jointly-Stable Periodic Distribution

Proposition 1. (Uniqueness of Jointly-Stable Periodic Distribution). Given communicating state
transition T and perturbed joint update function with noise U, the jointly-stable periodic distribution
is unique as € — (0 over time.

Proof. A perturbed Markov process has a unique stochastically stable distribution as noise € —0
over time if a perturbed Markov process is regular: the transition matrix corresponding to a stationary
policy contains a single recurrent class of states (i.e., states that are visited infinitely often) and a
possibly empty set of transient states (i.e., states that are visited only finitely often) [26] (Corollary
4.8, Section 5). As such, we prove that a Markov process of an active Markov game is regular by
contradiction and thus show that the jointly-stable periodic distribution is unique as e — 0. Suppose a
perturbed Markov process of an active Markov game is irregular (i.e., there is more than one recurrent
class), where the corresponding Markov matrix over the joint space of states and policies is defined
asp(s',0'|s,0)=> m(als;0)T(s'|s,a)U(0'10,T) Vs,s' €S,0,6’ € ©. Because the perturbed

a
joint update function has communicating strategies and thus contains a single recurrent class of
policies, the state transition 7 must have multiple recurrent classes to result in an irregular active
Markov game. However, 7 has a single recurrent class only due to the communicating assumption,
which is the contradiction. Therefore, we conclude that a perturbed Markov process of an active
game is regular, which has a unique stochastically stable distribution as e — 0 by [26].]

15

C Derivation of Active Differential Bellman Equation

Proposition 2. (Active Differential Bellman Equation). The differential value function Ué,; represents

the expected total difference between the accumulated rewards from s and 0% and the average reward
pyi [18]. The differential value function inherently includes the recursive relationship with respect to

’U;i at the next state s' and the updated policies of other agents 0%
S0=s, 9(—]«;:9-1"

aé;T’”‘“’('|50:T?ei)’a;T”W('JSO:Tieéfr)»
se41~T (|se,ae),0.5 1 ~UT (0%, 7,%)

—Z (als:0")3- m(a?|s; 6)ZT(Is, a)ZU ORI

a?

{R’(s, a) — phi +vhi (s, 0'“)}.

. . T . .
vpi(s,07%) = lim E[> (Ri(se, ae) — pi)

T—o0 +=0

Proof. We seek to derive the recursive relationship between v}, (s, %) and v}, (s', 8*). We leverage
the general derivation outlined in [18] (page 59) and extend it to our active Markov game formulation:

S0=s, 061':04,
GB;TNW("SO:T§91)7a{11:TN7T(',|50:T§'96?r)a
stp1~T (cse,ae),0. 5 ~UT(+|0;%, 1)

so=s, 667":9’7;7
‘16;T"‘7"(‘|50:T%91)aaa'z:T"’T"("‘SO:T{eB?T)v}
stp1~T (¢|se,ae),0.% ~UT (0%, 7.°)
dom(alls;0%) > m(a™]s;07) X T (s'|s, @) > UT(07V]07, 77)

s/ 9-ir

ai a-i

. T i i
vpi (5,07)_ lim E[> (Rl(st,at) - ple'i)

T—o0 t=0

)) T . .)
— lim E[Rl(so,ao)—pgi + 3 (Ri(si, a7®) — pi,)
t=1

T—o0

s1=s’ 91‘ 97:'
aj,p~m(-s1r;0”),01 TN""(‘51 T) 1 T) :H

[Ri(s,a) =+ T B[3 (R¥(s041, @e41) ~ pj)
T=oo Li=o sep1~T (- \sf at),0:5, ~UTH((0; 7Y

—Z (a]s:0") 3 (a"'ls;H'i)ZT(S’I&a)gX_;U HCRI RN

a*

[Rl(s, a)—ph+ vk (5, 9*“)} . (15)
]
D Derivation of Active Average Reward Policy Gradient

Proposition 3. (Active Average Reward Policy Gradient Theorem). The gradient of active average
reward objective in Equation (7) with respect to agent i’s policy parameters 0" is:

Vo) =1 % ¥ (s 86l) 3 Vore(ailsis 05 (gl 0)dh (50,05, ae),

ki Lse,0,° ag a,’
with gg: (se, 05", ae) = 3T (set1]se, ae) U010, 74)[Ri(se,ae)—ﬂéi+U§i(8u179211)}-
Se+1 954-1

Proof. We seek to derive an expression for optimizing the average reward objective in Equation (7)
with respect to agent ¢’s policy parameters 6*. Our derivation leverages the general policy gradient
theorem proof for the continuing case in [18] (page 334). We begin by expressing the gradient of the
differential value function v}, (s, 8°%) for s€ S and 0* € ©~*:

Voivh: (5,07%) = Vi Zw(ai\s; 0') > m(at|s;07)qii (5,074, a)

a’ a-t
- %: Veim(at|s; 0%) azl w(a™[s;07%)q}. (s,07% a)+ (16)

Som(a'|s;07) > w(ais;07) Voighi (s, 07, a).
- ai S—
a Term A

16

We continue to derive the Term A in Equation (16):
Vot (5,0 a) = V| ST (' s,a) 53 UHO V1077 [Ri (s, @) =i +uj(5,077)|

= Vo + ST s oa) X U0 O TVl (s,0°). ()
6 i’

We summarize Equation (16) and Equation (17) together and re-arrange terms to obtain:

Voiph = > Voim(al|s; 07) Y- w(a®|s;07%)g), (s, 0%, a)+

S(ls;07) Y w(a?]s; 07 VLT sa) S U YO0, T Vgevg (s, 07)—
a? a-t 9-ir
Voivhi(s,07%). (18)

We define the jointly-stable periodic distribution with respect to the agent ¢’s fixed stationary policy:

El
™=

ﬂk i (So41, 0041 1¢+1)= kle Yo ki (5e,0000) Y (ag|se; 0p) (19)
Se, 9 @ ag

T (sex1]|se, ae) u71(0211 |02i, TZZ) Vsp41€S,0041 €0,

where 8, = {6, 6,*}. We now apply Equation (19) to Equation (18) and derive the final expression
for policy gradient by writing Vi pl: as Vi JL(6"):

1k
EZ > uw(se,eelﬁ)wf(f)l) Z Y Hkei (e, 0ell)
l=15,,0,* [1s,,6,%
> Voim(ag|se; 07) 32 w(ag|se; 05%)ap: (se, 05°, ae)+
ay a;
Som(aglse 07) 3o m(agtse;057) ST (ser1lse,ae) S U 0,4 11055, 7") Voivhi (011,055 1) —
% a o 0
V‘gz"l}éi@g,eii) . (20)

Note that the left-hand side V. J2(6") does not depend on s, and 6,¢, so Equation (20) becomes:

wﬂ (6"

k
E Z E 01 (50,0010) 32 Vgim(aylse; 0°) 3 m(ag®|se; 05")ap: (se, 0;°, ae)+
(=15,.0, a ay’
1 k)) . .
=00 D Mk (se,0e]0) Do (aglse; 6°) Do mw(agt|se; 6%) 3o T(serilse, ae)
k £=1s,, 9 al azi So+1
> u (9e+1|‘9¢ T) Vv (ser1,05% 1) —
051
1k) .
- tk0i (S0, 00| €)YV givy: (se,05")
k (=1 sz,e-i

1k . . , L .
=2 2 frei(se,0el0) 2o Vgim(aglse; 0°) 30 m(ag®|se; 05°)qpi (se, 0, ae)+

(=1 52792’ ay a;
1 k.) . 1k . .
7 Z H, 0 (541, Oeta |6+ 1)Voivgi(se41,0g51) = 7 20 20 Hnoi(se, 0elt) Voivg: (s, 6°)
1k . L .
=7 e; 2, g gi (se, 0el0) 30 Vgim(ap|se; 0)az m(ay|se;05°)qp: (50,05, ae). (1)
50,0, a; 7]

O

17

E Additional Implementation Details

E.1 Network Structure

Our neural networks for the inference learning and reinforcement learning module consist of fully-
connected layers for vector observations (e.g., iterated matrix games, MuJoCo RoboSumo [19])
and additional convolution layers for image observations (e.g., MAgent Battle [32]). The encoder
outputs the mean and standard deviation for the Gaussian distribution of p(2;% ;|2;%, 7/; ¢,), where
we sample £, by applying the reparameterization trick [28]. From the sampled 2;%, the decoder
p(azt|s:, 2;%; ¢L..) outputs a probability for the categorical distribution (discrete action space) or
a mean and variance for the Gaussian distribution (continuous action space). Similarly, the policy
7(al|ss, 2;%;07) outputs a probability for the categorical distribution (discrete action space) or a
mean and variance for the Gaussian distribution (continuous action space). Lastly, the critic outputs
g-values for all actions for discrete action space (i.e., gj: (af|s¢, 2;*, a;*; 1})) by following [31] or
outputs a g-value given the joint action for continuous action space (i.e., qéi (¢, 2:%, ag; 1%))-

E.2 Optimization

We detail additional notes about our implementation:

* For simplicity, we consider the period k=1 and develop corresponding soft reinforcement learning
optimizations in Section 3.2. The current FURTHER implementation can be extended to settings
with k> 1 by sampling k states and policies that are consecutive within each batch.

¢ For continuous action space, we modify SAC for continuous action space [27] and replace the soft
value function vy, in Equation (13) with:

véi(s, 27t V) :EaiNTr(,‘8727i;9i)7a77ﬁ,\/ﬂ-(.‘3;2771)[’811:111H2qé1(5, 27 a; 1/)2)] +aH(m (s, 27t 0')). (22)
We also replace the policy optimization in Equation (14) with the following:
JL(0") :E(s,s-i,a-i)NDi,e~N(0,1)[

ﬂm—iln2 Qét (57 2_i7 f@i (6, S, ﬁ_i)7 a_i; wzﬁ) - IOg’Tf'(f‘gi (6, S, 2_7:)'87 2—1,’ 97’>i|)
where a’ = fy: (€; s, 27%) denotes the output of the reparameterized i’s policy [27].

* In practice, we apply a weighting of 0.01 on the KL divergence term in Equation (11) for balanced
training of the inference learning module.

* Because it is impractical to consider the entire interactions from the beginning of the game in
computing Equation (11), we limit 7§.,_; to be recent interactions specified by a batch size.

18

E.3 Pseudocode

Algorithm 1 FURTHER and FURTHER Mean-Field

Require: Learning rates g, o), i, g, soft g-target update rate 7,

1: # Agent initialization
2: for Each agent ¢ do S _
3: Initialize RL module 6°, 97, V5, Y71, V3, pys, D*
4: Initialize inference module ¢f,., Piec]
5: Initialize other agents’ latent strategies Zq"
6: end for
7: for Each timestep ¢ do
8: # Decentralized execution
9: for Each agent i do o
10: Select action a} ~ 7(+|s¢, 2:%;6°)
11: end for

12: Execute joint action a and receive next state s;41 and joint rewards 7
13: # Mean action computation and perform inference
14: for Each agent ¢ do

15: if Apply mean-field then ‘ o

16: Compute mean action of its neighborhood a@;* and set ax ={a},a;"' }

17: end if) o

18: Infer next updated policies of other agents 2;% 1 ~ p(+|2¢", 7¢; denc)

19: Add a transition to its replay memory D' <— DU {s:, £;%, as, 7%, st11, z“;_ﬁ_l}
20: end for

21: # Decentralized training
22: for Each agent i do

230 (WP} (Wb e} — g, 0} Ti(85, ph) for = 1,2
24: 0" 0"+ axJ;(0%)

25: {_¢_)znc7 (btzlec } — {qbénc: QZS(ZIeE} — Qg ngbo(¢énca qb(liec)

26: W = Tqbp + (1 —)b for f = 1,2

27: end for

28: end for

F ELBO Derivation

We derive our ELBO optimization in Equation (11) for the inference module. In particular, we follow
the ELBO derivation in [56] (Appendix A) and modify it for our multiagent setting:

Ep(ri)| 1082(T145 Glec) | = Epri) _10g/P(Tfmﬁifﬁ%ec)dﬁift}

P21 8|75 Blne)
P(21% 17615 Dlne)
p(Tii.:tv‘?ift;qs(ilec) }
P(E15] 70015 Plne)
Pt 2105 Dlec) }
P(215 170015 Dlne)

=E

P(Tg:t) L 10g /p(Tli:N iiztv (b(iiec) déizt]

=E

_logE

p(T[g:f,) p(ﬁiftl‘r{g:t—l;(i)gnc) [

e R AL T [log

=]Ep(Té:t)’p('éi:'tlT(g:t—l ;d);’nc) |: log p(Tli:t7 ‘éilt’ ¢<iiec) - log p(’%ilt |T(§:t—1) ¢énc)
t . X . t—1 X
- EP(T&:t)vP(ﬁiftlT&tﬂ%d’g’nc) |:t’Z:1 logp(aiﬂst/ ’ zi'l’ d)fiec) + 1‘;0 1ng(2£;t)—
t

2 log (&1 Dinc)] 24

19

Finally, we summarize terms to obtain:

B w23t 7y s6e) Zl log p(ag:|sy, 255 dgec) — D (P(247 721 Penc) [IP(2571)) } :
t'=

Reconstruction loss KL divergence

G Experimental and Hyperparameter Details

G.1 Domain Details

Iterated matrix games. As in [6], we model the state space in all iterated matrix games as so =&
and s; =a¢—1 for t > 1. For these simple domains, we empirically observe that training the policy
and critics based on the most recent transition improves training performance. Lastly, in Question 1,
we consider agent ¢ playing against a ¢g-learning agent j with a learning rate o, of 0.5, a discount
factor y of 0.9, and a fixed e-exploration of 0.05.

MuJoco RoboSumo. Each ant robot observes a vector with size 128, which consists of the position
of its own and the opponent’s body, its own joint angles and velocities, and forces exerted on each part
of its own body and the opponent’s torso [19]. We note that each agent has partial observations about
its opponent and cannot observe the opponent’s velocities and limb positions. Regarding the action
space, each agent has a continuous action space with a dimension of 8. Lastly, we use the reward
function that consists of a sparse reward of 5 for winning against the opponent and the following
shaped rewards:

* Reward for moving towards the opponent proportional to -dqpp, Where dop, denotes the distance
between the agent and the opponent.

* Reward for pushing the opponent further from the center of the ring proportional to exp(-deenter)s
where deeneer denotes the distance of the opponent from the center of the ring.

We refer to [19] (Appendix D) for more RoboSumo details.

MAgent Battle. Each agent receives an observation of a 13 x 13 x 9 image with the following
channels: its and opponent’s team presence, its and opponent’s team HP, its and opponent’s team
minimap, and its position [32]. The discrete action space has a dimension of 21 for moving around
the gridworld and attacking the opponents. Lastly, reward is given as 5 for killing an opponent,
-0.005 for every timestep cost, 0, 2 for attacking an opponent, and -0.1 reward for dying. We refer
to [32] for more MAgent details.

G.2 Baseline Details

e LILI [8] maximizes the discounted return véi in the active Markov game:

) s0=s, 90 =071,
max v, (s,07%): maXE[ST AR (54, ag) |ab.p~m (506),ag T~7r(|s0:7305: T)j| (25)
0° 0t t=0 st+1~T (+st,a4),0 t+1 ~U" (|9t)

We implement LILI by replacmg the average reward target y in Equation (12) with the discounted
return target: y=r" + ’yvom(s’ 27, 1%)
¢ MASAC [14] maximizes the discounted return fué,‘, in the stationary Markov game:

So =s,

max p: (s, 07%): maxE[SO AR (54, ag) [abir~mClsoirio?) agip~m(-|sor;07), | (26)
0i 01 =0 se41~T (+|se,ae)

MASAC employs the framework of centralized training with decentralized execution [12] and has
access to other agents’ policies to perform optimization during training.

* DRON [57]: An approach that extends DQN [58] with opponent modeling by predicting both
Q-values and current strategies of other agents. This baseline fails to predict future policies of others.

* MOA [45]: An approach that additionally optimizes the influence reward to consider influential
actions to other agents. This baseline also has the discounted return objective.

20

G.3 Hyperparameter Details

We use an internal cluster equipped with GPUs of RTX 3090 and CPUs of AMD Threadripper 3960X
for choosing hyperparameters. We report the important hyperparameter values that we used for each
of the methods in our experiments:

Hyperparameter Value
Critic learning rate o, 0.002
Gain learning rate o, 0.02
Actor learning rate o, 0.0005
Inference learning rate 0.002
Entropy weight o 0.4
Dimension of latent space |27¢| | 5
Discount factor y 0.99
Batch size 256

Table 2: IBS Experiment

Hyperparameter Value
Critic learning rate o, 0.0005
Gain learning rate o, 0.02
Actor learning rate o, 0.0001
Inference learning rate 0.0005
Entropy weight o 0.3
Dimension of latent space |27¢| | 5
Discount factor ~y 0.99
Batch size 64

Table 3: IC Experiment

Hyperparameter Value
Critic learning rate o, 0.01
Gain learning rate o, 0.05
Actor learning rate o, 0.001
Inference learning rate o 0.01
Entropy weight o 0.35
Dimension of latent space |z7¢| | 5
Discount factor ~y 0.99
Batch size 64

Table 4: IMP Experiment

Hyperparameter Value
Critic learning rate o, 0.0002
Gain learning rate o, 0.2
Actor learning rate a; 0.0001
Inference learning rate 0.0002
Entropy weight o 0.01
Dimension of latent space |27¢| | 10
Discount factor ~y 0.99
Batch size 256

Table 5: RoboSumo Experiment

21

Hyperparameter Value
Critic learning rate o, 0.001
Gain learning rate v, 0.2
Actor learning rate o, 0.0005
Inference learning rate v 0.001
Entropy weight o 0.01
Dimension of latent space |z7¢| | 10
Discount factor ~y 0.99
Batch size 256

Table 6: Battle Experiment

H Additional Evaluation

IBS Comparison against Q-Learner IC Comparison with Self-Play Setting

M

IMP Comparison

150000

L

JJM‘"
e

~

=

/
100000 /

50000

1

Relative Accumulate Reward
N\

Average Reward for Agent i
w o %

Average Reward for Agent i

0 10000 20000 30000 10000 0 1000 2000 3000 1000 5000 0 200000 400000 600000 800000 1000000

Timestep Timestep Timestep
—— FURTHER MASAC —— MOA —— FURTHER MASAC —— MOA FURTHER vs LILI —— FURTHER vs DRON
LILI —— DRON LILI —— DRON —— FURTHER vs MASAC —— FURTHER vs MOA
(a) (b) (©

Figure 7: (a) Convergence in IBS. The FURTHER agent achieves convergence to its optimal pure
strategy Nash equilibrium. (b) Convergence in IC with self-play. The FURTHER team shows better
converged performance than baselines. (¢) A competitive play in IMP between FURTHER and
baseline methods. FURTHER receives higher rewards than baselines over time.

We show additional results about DRON and MOA in playing the iterated matrix games (see Figures 7a
to 7c). Because DRON and MOA also suffer from myopic evaluation, we generally observe the
sub-optimal performance of these baselines in our evaluations. In particular, DRON does not consider
the underlying learning of other agents, resulting in the FURTHER agent easily exploiting the DRON
opponent in Figure 7c. We also observe that, while MOA’s optimization of the influence reward can
effectively learn coordination in sequential social dilemma domains [49, 45], this influence reward
optimization may not be useful in the competitive setting.

I Limitation and Societal Impact

FURTHER has a limitation that the framework does not consider an agent :’s own non-stationary
policy. As discussed in Section 3, it is ideal to maximize the average reward over the space of joint
update functions, including ¢’s own update function. However, it is computationally intractable to
solve long horizon meta-learning by considering ¢’s own policy dynamics, and this remains an active
area of research [9, 29, 30]. Instead, we take a practical approach by assuming 7’s fixed stationary
policy. Taking an agent’s own non-stationary policy into account is one of the future directions. We
also model the period as k = 1 for simplicity in our experiments, and studying how varying k has
a potential effect on performance is another future direction. Regarding the societal impact, while
FURTHER can achieve a better social outcome in cooperative and self-play settings, a FURTHER
agent aims to influence other agents to converge to desirable policies from its perspective. As such,
there can be applications, where the framework may lead to negative societal impacts by taking
advantage of other agents’ defective decision-making.

22

	1 Introduction
	2 Problem Statement: Active Markov Game
	2.1 Directed Graphical Model of Active Markov Game
	2.2 Solution Concepts in Active Markov Games
	2.3 Addressing Sensitivity to Initial Conditions

	3 FURTHER: Practical Method for Solving Active Markov Game
	3.1 Formulation and Policy Gradient Theorem of FURTHER
	3.2 Soft Actor-Critic Implementation with Variational Inference

	4 Evaluation
	5 Related Work
	6 Conclusion
	A Example of Initial Condition Sensitivity
	B Uniqueness of Jointly-Stable Periodic Distribution
	C Derivation of Active Differential Bellman Equation
	D Derivation of Active Average Reward Policy Gradient
	E Additional Implementation Details
	E.1 Network Structure
	E.2 Optimization
	E.3 Pseudocode

	F ELBO Derivation
	G Experimental and Hyperparameter Details
	G.1 Domain Details
	G.2 Baseline Details
	G.3 Hyperparameter Details

	H Additional Evaluation
	I Limitation and Societal Impact

