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Abstract

Our environment is filled with rich and dynamic acoustic information. When
we walk into a cathedral, the reverberations as much as appearance inform us of
the sanctuary’s wide open space. Similarly, as an object moves around us, we
expect the sound emitted to also exhibit this movement. While recent advances in
learned implicit functions have led to increasingly higher quality representations of
the visual world, there have not been commensurate advances in learning spatial
auditory representations. To address this gap, we introduce Neural Acoustic Fields
(NAFs), an implicit representation that captures how sounds propagate in a physical
scene. By modeling acoustic propagation in a scene as a linear time-invariant
system, NAFs learn to continuously map all emitter and listener location pairs to a
neural impulse response function that can then be applied to arbitrary sounds. We
demonstrate NAFs on both synthetic and real data, and show that the continuous
nature of NAFs enables us to render spatial acoustics for a listener at arbitrary
locations. We further show that the representation learned by NAFs can help
improve visual learning with sparse views. Finally we show that a representation
informative of scene structure emerges during the learning of NAFs. Project site:
https://www.andrew.cmu.edu/user/afluo/Neural_Acoustic_Fields

1 Introduction

The sound of the ball leaving the bat, as much as its visible trajectory, tells us whether the hit is likely
to be a home run or not. Our experience of the world around us is rich and multimodal, depending on
integrated input from multiple sensory modalities. In particular, spatial acoustic cues provide us with
a sense of the direction and distance of a sound source without needing visual confirmation, allow
us to estimate the properties of a surrounding environment, and are critical to subjective realism in
gaming and virtual simulations.

Recent progress in implicit neural representations has enabled the construction of continuous, differ-
entiable representations of the visual world directly from raw image observations [Sitzmann et al.,
2019, Mildenhall et al., 2020, Niemeyer et al., 2020, Yariv et al., 2020]. However, our perception of
the physical world is informed not only by our visual observations, but also by the spatial acoustic
cues present in the environment. As a preliminary step in learning the acoustic properties of scenes,
we explore an implicit model that represents the underlying impulse response of audio reverberations.
As shown in Figure 1, our model can model the spatial propagation of sound in a physical scene.

Past work has explored capturing the underlying acoustics of a scene [Raghuvanshi and Snyder, 2014,
2018, Chaitanya et al., 2020]. These models, however, require handcrafted parameterizations which,
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(a) (b) (e)(c) (d)

Figure 1: Neural Acoustic Field (NAF) learns an implicit representation for acoustic propagation. (a) A 3D
top-down view of the house with two rooms. (b)-(e) The loudness of acoustic field as predicted by our NAF is
visualized for an emitter located at the red dot. Notice how sound does not leak through walls, and the portaling
effect open doorways can have. Louder regions are shown in yellow.

critically, prevent such approaches from being applied to arbitrary scenes. In this work, we extend
this approach by constructing an implicit neural representation which captures, in a generic manner,
the underlying acoustics of a scene.

Learning a representation of scene acoustics poses several challenges compared to the visual setting.
First, how do we generate plausible audio impulse responses at each emitter-listener position? While
we may represent the visual appearance of a scene with an underlying three-dimensional vector, an
acoustic reverberation (represented as an impulse response) can consist of over 10,000 time-domain
values and, thus, is significantly harder to capture. Second, how do we learn an acoustic neural
representation that densely generalizes to novel emitter-listener locations? In the visual setting,
ray-tracing can enforce view consistency across large portions of a visual scene (modulo occlusions).
While in principle, in a similar manner, we may reflect acoustic "rays" in a scene represented as an
implicit function to obtain an impulse response, an intractable amount of compute is necessary to
obtain the desired representation [Srinivasan et al., 2021].

To address both challenges, we propose Neural Acoustic Fields (NAFs). To capture the complex
signal representation of impulse responses in a compact and spati ally continuous fashion, NAFs
encode and represent an impulse-response in the time-frequency domain. Motivated by the strong
influence of nearby geometry on anisotropic reflections [Raghuvanshi and Snyder, 2018], we propose
to condition NAFs on local geometric information present at both the listener and emitter locations
when decoding the impulse response. In our framework, local geometric information is learned
directly from impulse responses. Such a decomposition facilitates the transfer of local information
captured from training emitter-listener pairs to novel combinations of emitters and listeners.

We show that NAFs are able to outperform baselines in modeling scene acoustics, and provide
detailed analysis of the design choices in NAFs. We further illustrate how the structure learned by
NAFs can improve cross-modal generation of novel visual views of a scene. Finally, we illustrate how
the learned representation of NAFs enable the downstream application of inferring scene structure.

2 Related Work
Audio Field Coding There is a rich history of sound field representation, encoding, and inter-
polation methods for 3D spatial audio. Some approaches seek to directly approximate the sound
field [Mignot et al., 2013, Antonello et al., 2017, Ueno et al., 2018] while adding handcrafted priors.
Others adopt a parametric representation that seek to model only the perceptual cues [Raghuvanshi
and Snyder, 2014, 2018, Chaitanya et al., 2020, Mehra et al., 2014, Ratnarajah et al., 2021]. Since
the complete acoustic field of a scene is computationally prohibitive to simulate in real time, and
expensive to store in full fidelity, these methods have typically relied on a handcrafted encoding
of the acoustic field, prioritizing efficiency above reproduction fidelity. In recent years, there has
been interest in using deep learning to directly learn a sound field from data, without making strong
assumptions about the scene. However in practice, these approaches use either a stationary listener or
emitter [Richard et al., 2020, 2022]. In contrast, our work enables the querying of the sound field for
arbitrary emitter and listener locations.

Implicit representations Our approach towards modeling the underlying acoustics a scene relies on
the use of a neural implicit representations. Implicit representations have emerged as a promising
representation of 3D geometry [Niemeyer et al., 2019, Chen and Zhang, 2019, Park et al., 2019,
Saito et al., 2019, Hong et al., 2022] and appearance [Sitzmann et al., 2019, Mildenhall et al., 2020,
Niemeyer et al., 2020, Yariv et al., 2020, Wang et al., 2021] of a scene. Compared to traditional
discrete representations, implicit representations are a continuous mapping capable of capturing data
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Figure 2: Overview of our NAF architecture where listener and emitter share a feature grid. Given a listener
position and an emitter location, we first query a grid for local features which are learned together with the
network during training. We compute the sinusoidal embedding of the positions, frequency, and time, and query
a discrete embedding matrix using the orientation and left/right ear. Our method predicts magnitude and phase.

at an "infinite resolution". In [Jiang et al., 2020] proposed a grid based representation for implicit
scenes, while more recently [DeVries et al., 2021] has adopted spatial conditioning for 3D image
synthesis, where in both settings, the grid enables a higher-fidelity encoding of the scene. Our work
also leverages local grids to model acoustics, but as an inductive bias and way to generalize to novel
inputs.

Audio-Visual Learning Our work is also closely related to joint modeling of vision and audio. By
leveraging the correspondence between vision and audio, work has been done to learn unsupervised
video and audio representations [Aytar et al., 2016, Arandjelovic and Zisserman, 2017], localize
objects that emit sound [Senocak et al., 2018, Zhao et al., 2018], and jointly use vision and audio
for navigation [Chen et al., 2020]. Recent work aims to propose plausible reverberations or sounds
from image input [Singh et al., 2021, Du et al., 2021], these approaches model the STFT using either
convolution or implicit functions, which we also utilize. Different from them, our work leverages
the geometric features learned by modeling acoustic fields to improve the learning of 3D view
generation.

3 Methods

We are interested in learning a generic acoustic representation of an arbitrary scene, which can
capture the underlying sound propagation of arbitrary sound sources across both seen and unseen
locations in a scene. We first review relevant background information towards modeling environment
reverberations. We then describe Neural Acoustic Fields (NAFs), a neural field which we show
can capture, in a generic manner, the acoustics of arbitrary scenes. We further discuss how we can
parameterize NAF so that it can capture acoustics property even at unseen sound sources and listener
positions. Finally, we discuss the implementation details of our model illustrated in Figure 2.

3.1 Background on the Propagation of Sound

The sound emitted by a sound source undergoes decay, occlusion, and scattering due to both the
geometric and material properties of a scene. For a fixed location pair (q, q′), we define the impulse-
response at a listener position q, as the sound pressure p(t; q, q′) induced by an impulse at q′.

Given an accurate model of the impulse-response p(t; q, q′), we may model audio reverberation of
any sound waveform s(t) emitted at q′, by computing the response r(t, q, q′) at listener location q
by querying the continuous field and using temporal convolution:

r(t; q, q′) = s(t) ~ p(t; q, q′) (1)
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Figure 3: Qualitative Visualization of Test Set Impulse Response Prediction. (a) Ground truth log-
magnitude. (b) Ground truth phase. (c) NAF predicted log-magnitude. (d) NAF predicted phase. (e) log-
magnitude of an anechoic audio (without any reverberation). (d) The sound with a reverberation impulse
response from our NAF. (e) The sound with the ground truth reverberation impulse response applied. Note
phases are unwrapped for visualization purposes. Time & frequency are on the horizontal and vertical axes.

3.2 Neural Acoustic Fields

We are interested in constructing a continuous representation of the underlying acoustics of a scene,
which may specify the reverberation patterns of an arbitrary sound source. The parameterization of
an impulse-response introduced in Section 3.1 provides us with a method to model audio propagation
when given an omnidirectional listener and emitter. To construct a model of a directional listener, we
need to further model the 3D head orientation θ ∈ R2, and ear k ∈ {0, 1} (binary left or right) of a
listener, in addition to the spatial position q ∈ R3 of the listener and q′ ∈ R3 of the emitter.

We may then model the time domain impulse response v using a neural field Φ which takes as input
the listener and emitter parameters:

Φ : R8 × {0, 1} → RT ; (q, θ, k, q′)→ Φ(q, θ, k, q′) = v (2)

Directly outputting the impulse-response waveform v ∈ RT in the time domain with a neural
network is difficult due to its high dimensional (over 10,000 elements) and chaotic nature. A naïve
solution would be to further add t as an additional argument to our neural field, but we found that
such a solution worked poorly, due to the highly non-smooth representation of the waveform (see
supplementary). We instead encode the impulse-response utilizing a short-time Fourier transform
(STFT) denoted vSTFT, which we find to be significantly more amenable to neural network prediction
due to the smoother nature of the time-frequency space. In Figure 3 we show magnitude spectrograms
for ground truth impulse responses and those learned by our network. As vSTFT is a complex value,
we further factorize vSTFT into log-magnitude and phase angle components. For phase angle, we
use the instantaneous frequency (IF) representation proposed in GANSynth [Engel et al., 2019].
To compute the IF representation, the phase angle is unwrapped and has the finite difference taken
across the time dimension for each frequency in the STFT. This transformation results in a phase
representation that conducive to learning due to more regular structure.

Thus, our parameterization of NAF is a neural field Ω that is trained to estimate the impulse response
function φ, and outputs [vSTFT_mag,vSTFT_IF] for a given time and frequency coordinate:

Ω : R10 × {0, 1} → C
(q, θ, k, q′, t, f)→ Ω(q, θ, k, q′, t, f) ≈ [vSTFT_mag(t, f),vSTFT_IF(t, f)] (3)

We train our model using MSE loss between the generated and ground truth spectrograms vSTFT:
LNAF =‖Ω(q, θ, k, q′, t, f)mag − vSTFT_mag(t, f)‖2+

α‖Ω(q, θ, k, q′, t, f)IF − vSTFT_IF(t, f)‖2 (4)
across spectrogram coordinates t and f . Where α is a scaling value used to balance the two losses.

3.3 Generalization through Local Geometric Conditioning

We are interested in parameterizing the underlying acoustic field, so that we may not only accurately
represent impulse-response at emitter-listener pairs we see during training, but also at novel combina-
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Figure 4: Qualitative Visualization of Neural Acoustic Fields. (a) Top down view of the rooms. (b) Results
as inferred by our neural acooustic field. Loudness of a sound given a emitter location indicated in red, lighter
color indicates louder sound. Note how openings and walls lead to portaling and occlusion of the sound.

tions of emitter and listener seen at test time. Such generalization may be problematic when directly
parameterizing NAFs utilizing a MLP with inputs specified in Eqn (3), as the network may learn to
directly overfit and entangle the relation between emitter and listener impulse-responses.

What generic information may we extract from a given impulse-response between an emitter and
listener? In principle, extracting the full dense geometric information in a scene would enable us
to robustly generalize to new emitter and listener locations. However, the amount of geometric
information available in a particular impulse-response, especially for positions far away from either
current emitter and listener is limited, since these positions have little impact on the underlying
impulse-response. In contrast, the local geometry near either emitter and listener positions will
have a strong influence in the impulse-response, as much of the anisotropic reflection comes from
such geometry [Paasonen et al., 2017]. Inspired by this observation, we aim to capture and utilize
local geometric information, near either emitter or listener locations, as a means to predict impulse-
responses across novel combinations.

To parameterize and represent these local geometric features, we learn a 2D grid of spatial latents
which we illustrate in Figure 2. The spatial latents are randomly initialized and uniformly distributed
in the room. When predicting an impulse-response at a given emitter and offset position, we query
the learned grid features at both emitter and listener positions, and provide it as additional context
into our NAF network Ω. Such features provide rich information on the impulse-response, enabling
NAF to generalize better to unseen combinations of both emitter and listener locations. In the rest of
this work, we refer to the NAFs with local geometric features as Ωgrid. We learn grid latent features
jointly with the underlying parameters of NAF. Additional details can be found in the supplementary.

Such a design choice, however, still requires us to consider how to further combine local geometric
information captured separately from either listeners or emitters. A naïve implementation would be
to maintain separate feature grids for both listener and emitter positions. Such an approach fails to
account for the fact that the local geometric information captured by emitter may also inform the
local geometric information around a listener. Examining Green’s function, which is the solution to
the wave equation, we note that it is in fact symmetric with respect to exchanging either listener or
emitter positions [Chaitanya et al., 2020], indicating that the impulse-response does not change when
omnidirectional emitters and listeners are swapped (acoustic reciprocity). Such a result means that we
may in fact utilize the local geometric information captured near an emitter position interchangeably
for either emitters and listeners. Thus, we propose our local geometric information as a single latent
grid, which we show to outperform the naïve dual grid implementation.

4 Experiments

In this section, we demonstrate that our model can faithfully represent the acoustic impulse response
at seen and unseen locations. Additional ablation studies verify the importance of utilizing local
geometric features to enable test time generation fidelity. Next, we demonstrate that learning acoustic
fields could facilitate improved visual representations when training images are sparse. Finally we
show that the learned NAF can be used to infer scene structure.
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NAFs AAC-linearAAC-nearest Opus-linearOpus-nearestGT-nearest

Figure 5: Comparison of the acoustic fields. From left to right, we visualize the loudness maps generated
by the full ground truth, our NAFs, and by AAC or Opus coding combined with linear and nearest neighbor
interpolation on the training set. Emitter location shown in red. Our method can faithfully reproduce the loudness
map present in the ground truth.

4.1 Setup

For each scene, we holdout 10% of the RIRs randomly as a test set. Each scene is trained for 200
epochs, which takes around 6 hours for the largest scenes on four Nvidia V100s. In each batch,
we sample 20 impulse responses, and randomly select 2, 000 frequency & time pairs within each
spectrogram. An initial learning rate of 5× 10−4 is used for the network and the grid features. We
add a small amount of noise sampled from N (0, 0.1) to each coordinate during training to prevent
degenerate solutions. For evaluating the learned acoustic fields, we use two different datasets:

Soundspaces. Soundspaces [Chen et al., 2020, Straub et al., 2019] is a synthetic dataset generated
via ray-tracing, and is auralized with an ambisonic head-related transfer function (HRTF). This
dataset consists of Ri probe points for each scene, with each probe capable of representing an
emitter or listener location for up to R2

i emitter and listener pairs. The emitters are represented
as omnidirectional, while the listener acts as a stereo receiver that can have one of four different
orientations. The listeners and emitters are at fixed height. Our NAFs are trained on 6 representative
scenes, where 2 consist of multi-room layouts; 2 consist of a single room with a non-rectangular
walls; and 2 consist of a single room with rectangular walls as in Figure 4.

MeshRIR. The MeshRIR dataset [Koyama et al., 2021] is recorded from a real scene, and contains
monaural data collected from a cuboidal room. The listener locations are at fixed height. The emitters
surround the listeners both above and below the listener plane.

4.2 Architecture Details

The Soundspaces dataset lacks the full parameterization of an acoustic field described in Equation 3,
so we train NAF with a restricted parameterization that is available in the dataset. This allows for
two degrees of freedom along the x − y plane for the listener locations q ∈ R2 and the emitter
location q′ ∈ R2. The listener is binaural with k ∈ {0, 1}, and can assume four possible orientations
θ ∈ {0, 90, 180, 270}, while the emitter is omnidirectional. In particular, we utilize a parameterization
of Ωgrid which maps an input tuple [x, y, x′, y′, f, t]×{0, 90, 180, 270}× {0, 1} to two scalar values
that represents the magnitude and phase for a given time and frequency in the STFT:

Ωgrid(x, y, θ, k, x′, y′, t, f)⇒ [vSTFT_mag(t, f),vSTFT_IF(t, f)] (5)

To encode the rotation θ, as there are only 4 possible discrete rotations in the dataset, we directly
query into a learnable embedding matrix of shape R4×n, returning a R1×n vector. Similarily, to
encode the left and right ear k, we similarly query into a learnable embedding matrix of shape R2×n,
returning a R1×n vector. The f, t tuple representing the frequency and time respectively are scaled to
(−1, 1) and processed with sinusoidal encoding using 10 frequencies of sin and cos. For MeshRIR,
we set emitter q′ ∈ R3 to account for the emitters that can vary in height, and do not utilize the
orientation or binaural embedding.

To obtain local geometric features for either an emitter or listener in a scene, we assume that our
scene is contained within a set of pixels P = {P1...Pk} which form a grid over the scene. For a
given position tuple (x, y) as query location, we then interpolate the local features. Where L(·) is the
interpolation function. (p∗1 . . . p

∗
k) are the set of all pixel that form the grid, and f̃(·) represents the

features stored at a given pixel:
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(x, y)⇒ L(x, y; f̃(p∗1), . . . f̃(p∗k)) (6)

=

k∑
i=1

wif̃(p∗i ) (7)

wi is determined by a Nadaraya-Watson estimator with a Gaussian weighting kernel applied to the
distance between query and grid coordinates:

wi = K((x, y), (xi, yi))/

k∑
j=1

K((x, y), (xj , yj)) (8)

K(x,x′) = exp(−‖x− x′‖22/2σ2) (9)

Because this interpolation function is differentiable, we jointly learn the grid features during training.
These queried features are combined with the coordinates processed with sinusoidal encoding using
10 frequencies of sin and cos functions. We process both the listener and emitter position tuples this
way. We combine the grid based features with the sinusoidal embeddings and the discrete indexed
embeddings as the input to our multilayer perceptron fφ. Please refer to Figure 2 for a visualization of
our model, and supplementary for further details. We compare using a shared local geometric feature
with the emitter and listener, as well as having the emitter and listener query their own individual
grids.

4.3 Evaluation of Neural Acoustic Fields

We first validate that we can capture environmental acoustics at unseen emitter-listener positions.

Method Storage (MiB)
AAC 312.07
Opus 163.23
NAF (Shared) 8.41

Table 1: Average space consump-
tion across 6 Soundspaces scenes.
Lower is better.

Baselines. We compare our model against two widely used high
performance audio coding methods: Advanced Audio Coding
(AAC) and Xiph Opus. We use low bitrates in order to attempt to
approach the storage costs for our NAF. For each method, we apply
both linear and nearest neighbor interpolation to the coded acoustic
fields. Both linear and nearest neighbor approaches are widely
used [Savioja et al., 1999, Raghuvanshi et al., 2010, Pörschmann
et al., 2020] in modeling of spatial audio. We further implement
the binaural DSP baseline described by [Richard et al., 2020],
which uses the image source method and a KEMAR HRTF. We
also compare the listener and emitter either sharing or using individual local geometric features in
our NAFs.

Each method is provided with the same train-test split. We visualize the acoustic fields produced by
different methods in Figure 5. Details of our baselines can be found in the supplementary section G.

Metrics. We evaluate the results of our synthesis by measuring the spectral loss [Défossez et al.,
2018] between the generated and the ground truth log-spectrograms, as well as measuring the
percentage error between the T60 reverberation time in the time domain. In this case, lower spectral
loss and T60-error values indicates a better result. Additional quantitative results can be found
in the supplementary. We also perform a human evaluation where subjects are presented with a
two-alternative forced-choice task. Each trial requires selecting if the NAFs or the AAC-nearest
auralized music samples best match with ground truth auralization.
Results. As shown in Table 2, our NAFs achieve significantly higher quality on the modeling of
unseen impulse responses compared to strong interpolation baselines across all six scenes. Observing
the qualitative results in Figure 4, we observe that NAFs can predict smoothly varying acoustic fields
that are affected by the physical surroundings. Extending our model to MeshRIR which is captured
from a real scene, we observe that our NAFs continue to perform better on both spectral and T60
metrics. Comparing our results against baselines in Figure 5 and Table 1, our methods are able to
better approximate the ground truth at a fraction of the storage cost, and does not exhibit the sound
energy leakage present in linear interpolation. The size of a spatial acoustic field is important for real
life applications. In our human evaluation with 21 subjects who were asked to judge 10 test-time
RIRs, 82.38% of responses indicates that our NAFs were higher quality compared to AAC-Nearest.
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Large 1 Large 2 Medium 1 Medium 2 Small 1 Small 2 MeshRIR Mean

Model Spec.↓ T60↓ Spec.↓ T60↓ Spec.↓ T60↓ Spec.↓ T60↓ Spec.↓ T60↓ Spec.↓ T60↓ Spec.↓ T60↓ Spec.↓ T60↓

AAC-nearest 1.913 9.996 1.989 13.31 2.111 6.148 2.122 6.051 2.296 9.798 2.509 5.809 1.057 4.740 1.999 7.979
AAC-linear 1.904 8.847 1.964 11.63 2.105 4.585 2.116 4.422 2.299 8.253 2.521 6.021 1.081 6.697 1.998 7.208
Opus-nearest 1.740 12.20 1.817 15.15 1.887 7.875 1.898 7.897 2.058 10.68 2.238 7.564 1.711 5.068 1.907 9.493
Opus-linear 1.780 11.30 1.827 13.55 1.922 6.710 1.934 6.917 2.097 9.116 2.284 6.981 1.743 5.768 1.941 8.621
DSP 1.106 14.62 1.170 13.68 1.064 10.24 1.067 9.732 1.079 12.77 1.097 11.03 N/A N/A 1.097 12.01

NAF (Dual) 0.413 6.288 0.421 7.111 0.386 3.173 0.387 3.169 0.365 3.497 0.361 2.210 0.403 4.201 0.388 4.241
NAF (Shared) 0.396 4.166 0.413 6.075 0.384 3.110 0.384 3.072 0.356 3.378 0.344 2.098 0.403 4.191 0.380 3.650

Table 2: Quantitative Results on Test Set Accuracy. We report the spectral loss between generated and
ground truth log spectrograms across methods, as well as the percentage (%) difference for the T60 reverberation
time. The best method for each room is bolded. For the nearest and linear baselines, we perform interpolation in
the time domain using samples from the training set. The DSP is not implemented for MeshRIR due to the lack
of absolute room coordinates.

Large Room 1 Large Room 2

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Training Images 75 100 150 75 100 150 75 100 150 75 100 150

NeRF 25.41 27.36 29.85 0.872 0.892 0.926 25.70 27.74 29.34 0.821 0.853 0.879
NeRF + NAF 26.19 27.59 29.90 0.895 0.911 0.927 26.24 28.22 29.45 0.837 0.866 0.879

Table 3: Quantitative Results on Cross-Modal Image Learning. Quantitative results on joint training of
NeRF and NAF jointly conditioned on a single local grid. We use very sparse training images in highly complex
scenes. When evaluated on 50 test images, we observe that cross-modal learning helps improve PSNR and SSIM
when the visual training data is more sparse.

A comparison of using shared and dual local geometric features indicates that despite having fewer
learnable parameters, we achieve better performance by sharing the local geometric features. Exam-
ples of individual impulse responses generated by our model are shown in Figure 3.

Generalization through Geometric Conditioning. We next assess the impact of utilizing
local geometric conditioning as a means to generalize to novel combinations of emitter-
listener positions. On the "Large 1" room, in Figure 7 we evaluate test set spectral er-
ror when NAF is trained with a limited percentage of the training data either with or
without local geometric conditioning. We find that such geometric conditioning enables
better test set reconstruction error, with the performance gap increasing with less data.
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Figure 6: Qualitative Visualization of Cross-Modal
Image Learning. Qualitative comparison between
NeRF+NAFs with RGB and acoustic supervision, and NeRF
learned with only RGB supervision. (a)-(c) Three views
from "Large 1". (d)-(f) Three views from "Large 2".

Figure 7: Local Geometric Conditioning.
Comparison of NAF with and without local
geometric conditioning trained with different
amounts of data.

4.4 Cross-modal learning

In this experiment, we explore the effect of jointly learning acoustics and visual information when
we are given sparse visual information. Recall that our NAF includes a local geometric feature grid
P that covers the entire scene. For our cross-modal learning experiment, we jointly learn this feature
grid with a NeRF network modified to accept local features sampled from this grid along with the
traditional sinusoidal embedding. In the acoustics branch, we query the grid using emitter and listener
positions. In the NeRF branch, we use point samples along the ray projected on the grid plane to
query the features. In both cases, the process is fully differentiable. We use a standard implementation
of NeRF with a coarse and fine network.
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Figure 8: Visualization of scene structure decoding with a linear layer. Column 1: The ground
truth scene structure map, at each position we visualize the distance to the nearest wall. 2: Linear
decoding results using MFCC features. 3: Linear decoding results using NAF features. 4: TSNE
applied to the NAF features.

In the NeRF only setting, we minimize color C reconstruction loss for a ray r over a batch of raysR:
LRGB =

∑
r∈R ||Ĉ(r)− C(r)||22. In contrast, in the NAF + NeRF experiment, we jointly minimize

LRGB + LNAF, where LNAF is defined in equation 4. We utilize 64 coarse samples and 128 fine
samples for each ray, and sample 1024 rays per batch.

Results. We train on the two large rooms in our training set. For each room 75, 100, 150 images are
used for training, while the same 50 images of novel views are used for all configurations during
testing. In Table 3 we observe that training with acoustic information helps improve the PSNR and
SSIM of the visual output. This effect is more significant when the training images are very sparse,
the NAF network helps less when there is sufficient visual information. Qualitative results are shown
in Figure 6, we see there is a reduction of floaters in free space.

4.5 Inferring scene structure

Given a reverberant sound, humans are able to build a mental representation of the surrounding room
and make a judgement about the distance of nearby obstacles Kolarik et al. [2016]. We investigate the
intermediate representations constructed by our neural network in the process of learning an acoustic
field, and examine if these representations can be used to decode the scene structure.

Setup. The intermediate representation of the NAF depends on both listener locations q and emitter
location q′, the rotation angle θ, the ear k, the time t and frequency f . For consistency, at a given
location (x∗, y∗) in the scene, we extract the NAF latent by setting the emitter location q′i = (x∗, y∗)i.
For the listener location, we iterate over five randomly selected points in the scene q ∈ [q1, . . . , q5],
which we keep constant for all q′i. The rotation angle is fixed to θ = 0, and we compute the
representation average over all possible (k, t, f), and concatenate latents for the selected q. For our
NAFs, latents are extracted from the last layer prior to the output which includes 512 neurons. As a

Explained variance

Features Large 1 Large 2 Medium 1 Medium 2 Small 1 Small 2 Mean

MFCC 0.501 0.458 0.614 0.642 0.820 0.723 0.626
NAF latents 0.908 0.891 0.900 0.923 0.936 0.916 0.913

Table 4: Quantitative Results on scene structure decoding. We measure the explained variance
scores of the predicted wall distance against the ground truth wall distance at test time locations
after linear decoding. NAF latents consistently achieve higher explained variance scores than MFCC
features.

comparison to our learned representation, we extract Mel-frequency cepstral coefficients (MFCCs)
from the ground truth impulse response provided by a nearest neighbor interpolator. We use a similar
setup as above, for a given location we set this to be q′i, and iterate over the same five listener locations
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q1...5. We average the MFCCs over the left and right ear, and concatenate for the selected q. After
flattening, the MFCC features are approximately 500 dimensional for any given room.

We fit a single linear layer to NAF and MFCC features respectively. For testing and visualization of
the linear decoding results, we sample a regular grid of points with 0.1m distance between each point.
For fitting the linear decoder, we randomly sample points within the scene such that the number of
training points are 10% as many as the testing points. For each location in the scene, we extract the
distance to the nearest wall as the decoding target.

Results. We visualize the results of our linear decoding in Figure 8. The intermediate representation
of our NAFs reveals an underlying structure that is both smooth and semantically meaningful. In
the multiroom scenes, the latent is well separated for each room. We are able to successfully decode
the scene structure with a linear layer when using our NAFs, but decoding fails when using MFCC
features. In Table 4, we show the amount of explained variance of our decoding results on the test
set. Our learned features are able to consistently achieve much higher scores than those using MFCC
features.

5 Discussion
Limitations and Future Work. Although our method achieves generalization and high quality
representations of acoustic fields within a single scene, NAFs do not currently generalize to multiple
scenes. Future work may explore generalization to novel scenes. One possible approaches may be to
incorporate multi-modal inputs with the goal of synthesizing an acoustic field with few-shot visual or
acoustic input.

Societal impact. Our work focuses on learning a high quality representation of acoustic fields.
The primary use case for our work lies in virtual reality and gaming. As our work can lead to more
believable and higher quality representations of spatial audio than alternative methods, it is possible
that our work could increase the dependency and time spent on gaming. The more compact nature of
our acoustic representations may allow for spatial audio to be deployed to more systems, and enable
more equitable access.

Conclusion. In summary, this paper introduces Neural Acoustic Fields (NAFs), a compact, contin-
uous, and differentiable acoustic representation which can represent the underlying reverberation of
different audio sources in a scene. By conditioning NAFs locally on the underlying scene geometry,
we demonstrate that our approach enables the prediction of plausible environmental reverberations
even at unseen locations in the scene. Furthermore, we demonstrate that the acoustic representa-
tions learned through NAFs are powerful, and may be utilized to facilitate audio-visual cross-modal
learning, as well as to infer the structure of scenes.
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Supplementary

A Additional Visualization of Rooms

Figure A1: Additional Qualitative Predictions of NAF. Qualitative visualization of the loudness
map as predicted by NAF across four different rooms.

We show additional NAF predictions of loudness as we move an emitter inside different rooms in
Figure A1. For each room, note how the sound is affected by the geometry. In wide open spaces the
sound is highly dispersed. While in thin structures the sound tends to concentrate locally. As we
move farther from the source, the loudness of the sound decreases.
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B Additional Visualization on Real-World Data
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Figure A2: Comparison on the MeshRIR real-world dataset. We compare our method on the
MeshRIR dataset across four emitter locations. Top. The loudness map using bilinear interpolation of
the ground truth. Middle. The loudness map using nearest interpolation of the ground truth. Bottom.
The loudness map predicted using NAFs. Our method can predict a smoothly varying loudness map
without artifacts.

In Figure A2 we compare on the MeshRIR dataset which is collected from the real-world. Bilinear
interpolation introduces characteristic artifacts at the sample boundaries, while nearest neighbor has
discretization artifacts. In contrast, our NAFs are able to predict a smoothly varying acoustic field
despite learning from discretely sampled training data.
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C Additional quantitative results

Spectral T60 DRR
Ridge-Orig 2.539 8.192 2.497
Ridge-Unfiltered 1.370 6.294 3.702
NAF (Dual) 0.403 4.201 0.992
NAF (Shared) 0.403 4.191 0.972

Table A1: Comparison against a kernel regression baseline We compare against a kernel ridge
regression baseline on the MeshRIR dataset. We find that our NAFs perform better on the metrics
evaluated.

In Table A1, we compare our method against "Kernel Ridge Regression with Constraint of Helmholtz
Equation for Sound Field Interpolation" on the MeshRIR dataset. "Ridge-Orig" denotes the authors
proposed setup which applies a 500Hz low pass filter. While "Ridge-Unfiltered" is a modified setup
where we do not perform a low pass. Note that their method requires an individual model for each
unique emitter location, while our NAFs can be queried using any emitter/receiver position.

IACC error ↓
Method Large 1 Large 2 Medium 1 Medium 2 Small 1 Small 2 Mean
AAC-nearest 236.8 184.2 213.7 215.3 264.8 272.5 231.2
AAC-linear 212.3 156.7 185.9 187.8 245.2 265.2 208.8
Opus-nearest 73.75 45.97 71.97 74.70 103.8 67.40 72.93
Opus-linear 75.56 48.32 73.38 77.33 109.2 78.10 76.98
DSP 460.5 446.0 430.0 430.1 443.6 446.3 442.7
NAF (Dual) 74.01 45.94 71.89 74.70 103.8 67.40 72.96
NAF (Shared) 73.68 45.90 71.52 73.58 103.6 67.40 72.62

Table A2: Mean absolute error of IACC. We compute interaural cross correlation coefficient
(IACC) using the impulse response from the left and right ears. Here we show the mean absolute
error of the IACC for a given method and the ground truth. Units are seconds, for visualization values
are multiplied by 1e6, lower is better.

In Table A2 we evaluate the error in the interaural cross correlation coefficient (IACC). The IACC is
correlated with the ability for humans to localize a sound. We find that NAFs have low IACC error.
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D Architecture and Training Details

We visualize all three models that we experiment with.

In Figure A3 is a network that uses different local feature grids for the emitter and receiver (dual
grids). The network uses the emitter and listener positions to sample from the two different grids.

In Figure A4 we show a model where the local feature grids for the emitter and receiver are shared.
This network uses the emitter and listener positions to sample from the same shared grid.

In Figure A5 we show a model that does not utilize any kind of local geometry conditioning.

The listener, emitter, phase, and time input are transformed using sinusoidal embedding, while the
orientation and left/right are retrieved. All transformed inputs are directly fed to the network. We find
that the sharing the feature grid performs better than using different local feature grids.
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Figure A3: Architecture of the model that uses emitter and listener specific local geometry condition-
ing.
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Figure A4: Architecture of the model that share emitter and listener local geometry conditioning.
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Figure A5: Architecture of the model that uses no local geometry conditioning.
Each network consists of 8 fully connected layers in a feedforward fashion, as well as a skip
connection consisting of two fully connected layers. The skip connection takes the input and adds
its output to that for the fourth intermediate layer. We utilize an intermediate feature size of 512,
and Leaky ReLU with a slope of 0.1 as the activation function. The grid is initialized to stretch the
bounding box of a scene. Each point is located at a distance of 0.25m from the nearest neighbor.
64 features are used for each point. Each element of the grid is initialized i.i.d. from N (0, 1√

64
).

We initialize the bandwidth for each point at σ = 0.25, and jointly train the bandwidth as part
of the network. For the network and the grid, we utilize an initial learning rate of 5e − 4. The
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Adam optimizer is used when training our network. We utilize a orientation embedding of shape
R7×4×512 where 7 is the number of intermediate outputs, 4 is the number of orientations, and 512
is the feature dimension. For the left-right embedding, we use a shape of R7×2×512. We perform
additive conditioning by adding aR512 vector to each intermediate output for both the orientation
and the left/right.

For each scene, to generate a log-spectrogram for each impulse response, we compute the mean and
standard deviation µ(t,f), σ(t,f) for each time/frequency index in the log-spectrogram, and normalize
the data prior to training:

vSTFT_mag(t, f) =
vSTFT_mag(t, f)− µ(t,f)

3.0× σ(t,f)

To generate the instantaneous frequency (phase) representation for each impulse response, we
normalize the data prior to training:

vSTFT_IF =
vSTFT_IF

3.0× σIF

For the sinusoidal embedding, we utilize both cos and sin with 10 frequencies each for encoding
position, phase, and time. For encoding position we utilize a max frequency of 27Hz, while for
encoding time and frequency we utilize a max frequency of 210Hz.

Since we do not know beforehand the time duration of an impulse response at an unseen location,
we compute the maximum impulse length for each scene and use this length to zero pad the training
impulse responses. Because the padded regions do not contain useful information, we want the
network to focus modeling efforts on the early regions of the impulse response. We achieve this
by stochastically padding the impulse response to maximum impulse length with 0.1 probability.
Because the implicit function is trained on individual (t, f) coordinates within a given vSTFT, training
samples do not need to be of the same length. During test time, we perform inference up to the
maximum duration of scene impulse response.

E Dataset Visualization

(a) (b)

Figure A6: A room the emitter-listener probes. (a) The 3D structure of a room. b The probes marking
the location of emitters/listeners.
In Figure A6, we visualize both the room and underlying set of probe positions in the training data.
Due to occlusion and the geometry, even slightly moving the emitter or listener position can result in
different results. As we demonstrated, both nearest neighbor and linear interpolation perform poorly
compared to our learned solution. In contrast, recovered acoustic fields from NAF trained on these
probe positions is substantially denser (Figure A1).

F Storage Comparison

We compare the averaged on disk storage cost of the different methods for inferring the spatial audio
using a precomputed training set in Table A3. Both linear and nearest interpolation methods require
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Storage (MiB)
Method Large 1 Large 2 Medium 1 Medium 2 Small 1 Small 2 Mean
AAC 495.97 478.55 483.42 451.14 116.75 54.64 346.74
Opus 258.51 257.08 245.65 231.06 66.15 29.75 181.37
NAF (Dual) 8.78 8.87 8.87 8.92 8.45 8.37 8.71
NAF (Shared) 8.44 8.49 8.49 8.51 8.28 8.23 8.41

Table A3: Total storage cost of different methods. We average the amount of data required for
different methods for the six scenes. Our NAFs are able to compactly represent the scene while
maintaining higher quality.

access to the entire training set, while our NAF based approaches compactly encode the acoustic
scene.

G Details of the compression baselines

If uncompressed, the precomputed spatial acoustic field can reach gigabyte or terabyte sizes depending
on probe density, scene size, and bandwidth of the impulse. When applied to gaming and virtual
reality applications, minimizing the space taken up by these acoustic representations is critical and
have been widely studied.

We utilize two state-of-the-art lossy coding methods applied to the audio. They are respectively
Advanced Audio Coding (AAC-LC) and Xiph Opus. These two methods were chosen because they
are in widespread usage for media encoding, are among the best coding methods for a given bitrate,
and have high quality open-source implementations available. The bitrates were selected on the basis
of attempting to match the size of the NAFs representations, while being allowed by the respective
encoders.

We describe the parameters and additional details for these two coding methods.

G.1 AAC baseline

We utilize ffmpeg 5.0, and select the open source "aac" implementation. We set the combined
stereo bitrate to 24 kBit/s (12kBit/s per channel) in constant bit rate mode, as we found that there are
occasional encode/decode failures below this bitrate.

G.2 Opus baseline

We utilize opustools 0.2 backed by libopus 1.3.1. The encoder is set to 12kBit/s for stereo
(6kBit/s per channel) in constrained variable bitrate mode. Complexity it set to the maximum of 10,
and music mode is set (as opposed to speech tuning mode).

H Alternative Neural Representations

Representation Spectral loss ↓ T60↓
Time domain 2.046 49.72
NAFs 0.396 4.166

Table A4: Learning different representations We compare NAFs in the STFT domain against
directly learning in the time domain.

Our current method follows prior work in learning the log-magnitude STFT and instantaneous
frequency phase. In this section, we investigate a possible alternative of directly learning in the time
domain. The MSE and T60 error percentage is presented in Table A4. We observe that modeling in
the time domain performs poorly.
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Large 1 Large 2
PSNR ↑ MSE ↓ PSNR ↑ MSE ↓

NeRF + grid + L2 22.69 6.956 24.86 7.128
NeRF + grid 25.41 6.618 25.70 6.921

Table A5: Regularizing the grid. In this experiment, we compare learning NeRF with a grid without
regularization, and with L2 regularization.

I L2 regularized grid in NeRF

In Table A5 we compare NeRF that utilizes a grid and trained using image reconstruction loss, against
a variant where a L2 penalty with weight 1e− 5 to ensure a smooth latent space is added to the image
reconstruction loss. There are 75 images used in the training set. We observe degraded performance
when we apply this penalty. This indicates that our NAFs are providing more information than simple
regularization to ensure a smooth latent grid.
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