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ABSTRACT
Due to complex interactions among various deep neural network
(DNN) optimization techniques, modern DNNs can have weights
and activations that are dense or sparse with diverse sparsity de-
grees. To offer a good trade-off between accuracy and hardware
performance, an ideal DNN accelerator should have high flexibil-
ity to efficiently translate DNN sparsity into reductions in energy
and/or latency without incurring significant complexity overhead.

This paper introduces hierarchical structured sparsity (HSS),
with the key insight that we can systematically represent diverse
sparsity degrees by having them hierarchically composed from
multiple simple sparsity patterns. As a result, HSS simplifies the
underlying hardware since it only needs to support simple spar-
sity patterns; this significantly reduces the sparsity acceleration
overhead, which improves efficiency. Motivated by such opportuni-
ties, we propose a simultaneously efficient and flexible accelerator,
named HighLight, to accelerate DNNs that have diverse sparsity de-
grees (including dense). Due to the flexibility of HSS, different HSS
patterns can be introduced to DNNs to meet different applications’
accuracy requirements. Compared to existing works, HighLight
achieves a geomean of up to 6.4× better energy-delay product (EDP)
across workloads with diverse sparsity degrees, and always sits on
the EDP-accuracy Pareto frontier for representative DNNs.
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1 INTRODUCTION
Modern deep neural networks (DNNs) can have weight and activa-
tion tensors with diverse discrete amounts of sparsity, i.e., sparsity
degrees, where sparsity is the percentage of zeros out of the total
number of values in the tensor. This phenomenon is a result of
complex interactions among various DNN optimization techniques
in a large DNN model design space. For example, activations can
be dense or sparse based on the choice of activation functions (e.g.,
ReLU [1] introduces sparse activations, whereas Mish [33] can re-
sult in much denser activations). Similarly, weight pruning is often
applied to over-parameterized DNN models, leading to zero-valued
weights within the network. Sparsity degrees for pruned DNNs vary
depending on how amenable the given network is to sparsification
(e.g., large models such as ResNet50 [16] can sometimes be pruned
to 80% sparsity while still maintaining accuracy, while compact
models such as EfficientNet [45] cannot be pruned as aggressively).

As a result, it is desirable to have a DNN accelerator that can
translate any sparsity into efficiency, resulting in a good accuracy-
efficiency trade-off. Specifically, the accelerator should be:

• Efficient: incurs low latency, energy, and area overhead
cost, referred to as having low sparsity tax, to implement the
sparsity-related acceleration features. The sparsity tax can
come from extra control logic, lack of data reuse, etc.

• Flexible: supports diverse sparsity degrees (including dense).
"Support" refers to two capabilities: (i) process the DNN to
produce functionally correct results; (ii) translate weight and
activation sparsity into reductions in energy and/or latency.

Specifically, the accelerator has two goals:
• for medium/high-sparsity DNNs, eliminate ineffectual opera-
tions (i.e., compute and data movement involving zeros) [19]
to introduce energy and/or latency savings;

• for low-sparsity DNNs, have similar energy efficiency and
latency as a dense accelerator (i.e., have a low sparsity tax).

However, to the best of our knowledge, none of the existing
DNN accelerators achieve both goals [8, 14, 23, 25, 30, 36, 37, 41,
42, 52, 58, 60]. Table 1 describes the incurred sparsity tax and spar-
sity degree diversity for representative accelerators across different
tensor accelerator categories. Dense accelerators [4, 25, 36] have
no sparsity tax, but never exploit sparsity. Structured sparse ac-
celerators [30, 31, 37, 60] target DNNs whose sparsity is spatially
constrained and introduce low-to-medium sparsity tax. However,
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Categories
Representative

Designs
Sparsity

Tax
Sparsity Degree

Diversity
Dense TC [36] N/A N/A

Structured
Sparse

STC [37] Very Low Low
S2TA [30] Medium Medium

Unstructured
Sparse

DSTC [52] High Very High

HSS Our Work Low High

Table 1: Comparison of designs from different DNN accelera-
tor design categories. HSS stands for hierarchical structured
sparsity. An ideal design should have a low sparsity tax to
achieve high efficiency and a very high number of supported
sparsity degrees to achieve high flexibility.

Figure 1: Composing two sets of density degrees, S0 and S1,
by multiplying the fractions in each set.

they often only recognize a limited set of sparsity degrees. Unstruc-
tured sparse DNN accelerators [39, 42, 52, 57] provide support for
arbitrarily distributed zeros with diverse sparsity degrees, but pay
a considerable sparsity tax (e.g., employ costly intersection units to
locate nonzeros) for that flexibility. Thus, they are often inefficient
for low-sparsity DNNs. In short, the trend of DNNs containing ten-
sors with diverse sparsity degrees challenges the fundamental design
premise of many DNN accelerators.

To address the limitations of existing work, we present a novel
class of sparsity patterns named hierarchical structured sparsity
(HSS), with the insight that we can systematically represent diverse
sparsity degrees by hierarchically composing them from simple
sparsity patterns. Such simple sparsity patterns help us maintain
a low sparsity tax by correspondingly simplifying the hardware
that implements acceleration features for translating sparsity into
reductions in energy/latency. Since there are many different ways
of composing various simple sparsity patterns and designing their
associated acceleration hardware, HSS opens up a promising design
space. We evaluate the impact of various design decisions in such
an HSS-based design space and propose an efficient and flexible
accelerator, HighLight1.

The key insight of our design is that we leverage the properties
of the multiplication of fractions to: i) represent diverse structured
sparsity degrees and ii) enable modularized low-sparsity-tax hard-
ware support for each set of fractions to exploit the structured
sparsity degrees. Fig. 1 illustrates the idea with two composable
sets of density degrees (where density = 1−sparsity) represented
as fractions. Composing the densities from S0 and S1 results in six
density degrees. Thus, hardware with modularized support for each
set naturally supports all six derived degrees.

1More information on HighLight can be found at http://emze.csail.mit.edu/highlight

This work makes the following key contributions:
(1) Proposes hierarchical structured sparsity (HSS), which allows

a flexible representation of diverse sparsity degrees by hierar-
chically composing different sets of simple sparsity patterns.
In addition, we propose a precise fibertree-based [44] sparsity
specification to distinguish HSS from existing sparsity patterns.

(2) Proposes a simultaneously efficient and flexible hardware accel-
erator design, named HighLight, that:
• leverages modularity in HSS to enable modularized spar-
sity acceleration to exploit different sets of simple sparsity
patterns in HSS at different architecture levels.

• introduces low-overhead sparsity acceleration hardware at
each architecture level to provide efficient processing with a
low sparsity tax.

(3) Demonstrates that DNNs can use HSS to meet various accu-
racy/efficiency requirements at various sparsity degrees.

(4) To demonstrate efficiency and flexibility, HighLight outperforms
existing works with better overall hardware efficiency across
workloads with diverse degrees in terms of both energy-delay-
product (EDP) and energy-delay-squared (ED2).
• Compared to dense accelerators, HighLight achieves a ge-
omean of 6.4× (and up to 20.4×) lower EDP across DNN
layers with diverse sparsity degrees (including dense) and is
at EDP parity for dense DNN layers.

• Compared to sparse accelerators, HighLight achieves a ge-
omean of 2.7× (and up to 5.9×) lower EDP and is at EDP
parity for sparse DNN layers.

2 BACKGROUND & MOTIVATION
This section introduces the basics of sparse DNN acceleration, dis-
cusses the limitations of accelerators designed for different sparsity
patterns (i.e., the distribution of zero and nonzero value locations),
and motivates the need for a simultaneously efficient and flexible
sparse DNN accelerator.

2.1 Opportunities and Challenges
The zero values in sparse DNNs can introduce a significant number
of ineffectual computations, whose results can be easily derived by
applying the simple algebraic equalities of 𝑋 × 0 = 0 and 𝑋 + 0 = 𝑋 ,
without reading all the operands or doing the computations [19, 54].
Thus, ineffectual computations introduce promising opportunities
for accelerators to eliminate unnecessary hardware operations (i.e.,
buffer accesses and arithmetic calculations) and improve efficiency.

However, to translate such opportunities into hardware savings,
the accelerator faces the challenge of providing hardware support
to identify nonzero values and evenly distribute them to parallel
hardware components, referred to as workload balancing. Workload
balancing is important to ensure high utilization of the available
resources, thus achieving maximum speedup. Often, the sparsity
tax associated with such hardware support is highly related to the
sparsity patterns that the accelerator aims to exploit.

2.2 Limitations of Existing Accelerators
In recent years, many sparse DNN accelerators have been proposed
to exploit ineffectual computations to reduce data movement and
compute for different sparsity patterns [6, 8, 11, 14, 19, 30, 37, 39,
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41, 42, 52, 57, 58, 60]. At a high level, we can classify them into
unstructured sparse accelerators and structured sparse accelerators.
In the following sections, we will discuss their limitations both
qualitatively and quantitatively.

2.2.1 Unstructured Sparse Accelerators. Unstructured sparse ac-
celerators target DNNs with unstructured sparsity, which refers
to an unconstrained distribution of zeros. Such patterns can be
introduced to activations by activation functions or to weights
by unstructured pruning that removes weights regardless of their
locations in the tensor.

Unstructured sparse accelerators have high flexibility to exploit
arbitrarily distributed zeros with any sparsity degree. However, the
hardware support for unstructured sparsity introduces a high spar-
sity tax since it cannot make any assumptions about the locations of
nonzero values when trying to identify and distribute the effectual
computations. Existing unstructured sparse accelerators either pay
for expensive intersections to identify the effectual computations
(e.g., SparTen [14] employs a prefix sum logic that occupies 55%
of its processing element area), or employ dataflows that identify
effectual computations without intersections but require large, and
thus expensive, accumulation buffers to hold the now randomly dis-
tributed output (e.g., the costly dataflow employed by DSTC [52]).
Furthermore, since the number of effectual computations varies
across sub-tensors within and across workloads, these accelerators
can often only ensure perfect workload balance for a limited set of
sparsity (e.g., DSTC [52] only ensures perfect workload balancing
among columns of compute units when a sub-tensor’s occupancy
is a multiple of 32).
Takeaway: unstructured sparse accelerators often support
diverse sparsity degrees with a high sparsity tax.

2.2.2 Structured Sparse Accelerators. Structured sparse accelera-
tors target DNNs with structured sparsity, which refers to distri-
butions of zeros with spatial constraints and is often introduced
via structured pruning [17, 30, 32, 35]. Structured sparsity can have
different spatial constraints for nonzero value locations. For exam-
ple, one of the most popular structured sparsity patterns is the G:H
sparsity pattern, which mandates (at most) G elements to be nonzero
within a block of H elements, and thus results in a density of G/H.
For example, NVIDIA’s Sparse Tensor Core (STC) [37] employs a
2:4 pattern, which sparsifies two elements in every block of four
elements [32], resulting in 50% sparsity.

The predetermined constraints for nonzero value locations in
structured sparsity make it much easier for hardware to identify
the locations of the nonzeros and evenly distribute them to par-
allel hardware components (e.g., for G:H sparsity, the hardware
can evenly assign G nonzeros to G compute units to balance the
workload). As a result, accelerating a specific pattern is often ef-
ficient with a very low sparsity tax. However, existing structured
sparse tensor accelerators often only accelerate a very limited set
of sparsity patterns (i.e., a few sparsity degrees). For example, the
STC [37] is only able to exploit the 2:4 pattern, whereas S2TA [30]
exploits a few 𝐺 : 8 patterns with design-specific constraints.
Takeaway: structured sparse accelerators often incur a low
sparsity tax but only support a few sparsity degrees.

Figure 2: Normalized energy-delay product (EDP) of accel-
erators running two types of DNNs, pruned Transformer-
Big [50] and pruned ResNet50 [16]. While ensuring similar
accuracy (within 0.5% difference), the DNNs were structured
pruned for STC [37] and HighLight (our work) and unstruc-
tured pruned for DSTC. For both models, HighLight achieves
the lowest EDP while ensuring similar accuracy.

2.2.3 Quantitative Comparison. To concretely demonstrate the lim-
itations of each class of accelerators, without loss of generalizability,
we quantitatively compare representative designs allocated with
similar hardware resources: (i) DSTC-like [52]: targets unstruc-
tured sparse DNNs with a high sparsity tax introduced by its costly
dataflow; (ii) STC-like [37]: targets DNNs with weights that are
dense or 2:4 sparse, introducing a low sparsity tax.

To compare the designs, we normalize their energy-delay-product
(EDP) to a dense accelerator, TC-like [36]. In particular, we evaluate
their EDP running two different DNN architectures, Transformer-
Big [50] and ResNet50 [16]. For each DNN architecture, while ensur-
ing similar accuracy (which we define as <0.5% difference), TC-like
runs the dense version of the model, STC-like runs a structured
pruned version, andDSTC-like runs an unstructured pruned version.
Fig. 2 shows the EDP of the three designs running all the GEMM
layers in the DNNs.

Inflexibility of Structured Sparse Designs:As shown in Fig. 2,
STC-like is outperformed by DSTC-like when running ResNet50.
This is because STC-like is designed to only allow a maximum
of 2× speedup with the 2:4 sparsity pattern. Furthermore, even
if ResNet50 has ∼60% sparse activations, STC-like cannot exploit
activation sparsity for speedup. On the other hand, DSTC-like is
able to translate the sparsity in both weights and activations into
reductions in both processing speed and energy consumption. Thus,
even if STC-like has a low sparsity tax, when running ResNet50, its
inability to translate various sparsity degrees into hardware savings
results in higher EDP than DSTC-like.

Inefficiency of Unstructured Sparse Designs: DSTC-like is
outperformed by STC-like on Transformer-Big, as shown in Fig. 2.
This is because DSTC-like’s outer-product-based dataflow with ex-
pensive accumulation buffer has a high sparsity tax. Since Transformer-
Big has less than 10% average sparsity in activations, DSTC-like’s
savings are overshadowed by its hardware support with high spar-
sity tax. Thus, even though DSTC-like has high flexibility, when
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running Transformer-Big, its inefficient sparsity support with high
overhead results in higher EDP than STC-like does.
Takeaway: there is no existing sparse accelerator that always
has lower EDP for both evaluated DNNs because of their
respective limitations.

2.3 Need for a Flexible and Efficient Design
To develop a flexible accelerator that is efficient for various DNNs
with diverse sparsity degrees, the community can benefit from a
general design that is simultaneously flexible and efficient. However,
as already demonstrated by theDSTC-like and STC-like comparisons
above, many existing sparse DNN designs tend to trade flexibility
for efficiency or vice versa, thus facing the challenge of not being
able to meet both requirements.

To address this problem, we introduce a hardware-software co-
design approach motivated by a novel class of sparsity patterns:
hierarchical structured sparsity (HSS), which leverages multiple
levels of G:H structured sparsity to express diverse sparsity degrees
in a multiplicative fashion. As shown in Fig. 2, while maintaining
accuracy with our HSS-based sparsification, our low-sparsity-tax
HSS-based hardware accelerator, HighLight, provides lower EDP
in both scenarios.

3 PRECISE SPARSITY SPECIFICATION
In order to clearly compare existing sparsity patterns and distin-
guish our proposed HSS from existing works, it is necessary to
precisely describe various sparsity patterns. However, conventional
sparsity pattern classification approaches are often based on names
that provide an informal characterization of just the dimensions
on which the pattern is imposed, and thus fail to distinguish be-
tween different sparsity pattern proposals [2, 21] (e.g., the term
sub-channel is repeatedly used to describe many different patterns
presented in Table 2).

To solve the problem, we propose a precise way of specifying
various sparsity patterns based on the fibertree abstraction [44]. As
shown in Table 2, our specification can easily distinguish between
existing sparsity patterns and cleanly reflects the properties of an
example sparsity pattern that belongs to our proposed hierarchical
structured sparsity (HSS).

3.1 Fibertree Abstraction
The fibertree abstraction [34, 38, 44] provides a systematic and
precise way to express the content of tensors, without getting into
the complexities related to its layout when the tensor is actually stored
in buffers (e.g., compressed or uncompressed). Since the sparsity
specification focuses on understanding the nature of the sparsity
patterns rather than how they can be compressed, we use fibertrees
as a basis for our proposed methodology.

For ease of presentation, we use the three-dimensional weight
tensor in Fig. 3(a) as an example, which has C channels, R rows,
and S columns. Fig. 3(b) shows the fibertree representation of the
tensor. The fibertree has three levels, each of which is referred
to as a rank and corresponds to a dimension of the tensor (e.g.,
the lowest rank, Rank0, corresponds to dimension S). Each rank
contains multiple fibers, each of which contains a set of coordinates
and their associated payloads. For intermediate ranks, the payload

Example
Pattern

Conventional
Classification

Fibertree-based Specification
Rank (<rule>). . .

[15] Unstructured CRS(Unconstrained)
[17] (Fig. 4(a)) Channel C(Unconstrained)→R→S

[35] Sub-kernel C→RS(G:H), with any G, H

[32] (Fig. 4(b)) Sub-channel RS→C1→C0(2:4)
[60] Sub-channel RS→C1→C0(4:16)
[30] Sub-channel RS→C1→C0(G≤8:8)

Example
Two-rank HSS (Fig. 5)

Sub-channel
RS→CN-1→

CN-2(3:4)→...→C0(2:4)
Table 2: Informal conventional classification and the pre-
cise fibertree-based specifications for example sparsity pat-
terns. For fibertree-based specificatons, ranks without prun-
ing rules, i.e., N/A rules in the figures, do not have (). Par-
titioned ranks are indicated by appending a number to the
rank name, e.g., C is split into C1 and C0. Note that there
could be multiple G and H values allowed for each rank.

Figure 3: (a) Example dense weight tensor. C: channels, R:
height, S: width. (b) Corresponding fibertree-based abstrac-
tion of the tensor. Each tensor dimension corresponds to a
level of the tree, referred to as a Rank.

is a fiber from a lower rank (e.g., the first coordinate in Rank1 has
the first fiber in Rank0 as its payload); for a coordinate in Rank0,
the payload is a simple value (e.g., the first coordinate in Rank0 has
the value 𝑎0 as its payload.

3.2 Fibertree-based Sparsity Specification
With the fibertree fundamentals presented above, we now discuss
how to use such an abstraction to describe sparsity in a tensor.
Sparsity is introduced via pruning away the coordinates in the dense
fibertree. At a high level, to define a specific sparsity pattern, a rank
order needs to be specified and each rank is assigned a pruning
rule. The rule specifies if the coordinates in each of its fibers can be
pruned away; and if so, whether there is a pattern that the per-fiber
pruning should follow.

Coordinates in arbitrary ranks can be pruned away. Pruning a
coordinate at the lowest rank simply removes values, whereas prun-
ing a coordinate at intermediate ranks removes its fiber payload
(i.e., the entire subtree associated with the coordinate), implicitly
pruning away all the associated lower-level coordinates. Because of
this chained effect, the introduced sparsity is conventionally known
as structured sparsity. Structured sparsity can have structures at
different granularities, which are impacted by the rank at which
the pruning rules are defined. For example, Fig. 4(a) shows the
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Figure 4: Fibertree-based specification for popular spar-
sity patterns applied to the tensor in Fig. 3(a). (a) channel-
based structured [18]: C(unconstrained)→R→S. (b) 2:4 struc-
tured [32]: RS→C1→C0(2:4). Please note that the abstraction
describes the exact sparsity, and is orthogonal to how the
tensor is stored in the buffer.

fibertree-based specification of the conventionally known channel-
based structured sparsity, which demands arbitrary channels to
be completely removed. The fibertree-based representation spec-
ifies the unconstrained pruning rule at the top rank C, as each
removed coordinate corresponds to a removed channel, which
is indicated by the empty circles. We specify such a structure as
C(unconstrained)→R→S as shown in Table 2 and Fig. 4(a). The
→ defines the higher to lower rank order, and ranks with pruning
rules carry (<rule>). The removal of the highest-rank coordinates
results in all zeros in the corresponding channels. Since the removal
of lower ranks is always implicit, the R and S lower ranks are not
associated with any explicit pruning rules and are thus not followed
by (<rule>) in the specification.

Furthermore, a sparsity pattern specification may involve first
applying content-preserving transformations to the tensor, such as
reordering, flattening, or partitioning the ranks [34]. For example,
this is done for creating the conventionally known sub-channel-
based 2:4 structured sparsity [37]. Fig. 4(b) shows the 2:4 structured
sparsity that’s supported by NVIDIA’s sparse tensor core. The orig-
inal ranks are first reordered to have C as the lowest rank, and the
C rank is then partitioned into two ranks, C1 and C0. The G:H-
style sparsity structure (as described in Section 2.2) is manifest by
allowing at most 2 non-zero values in each fiber of the C0 rank,
which due to the partitioning have exactly four coordinates. For
a specific fiber, we refer to the total number of coordinates as its
shape and the number of coordinates associated with nonzeros as
its occupancy. Thus, the fiber shape in C0 rank is defined by the
denominator of the fraction, i.e., H in C0(G:H) structured sparsity,
and the max fiber occupancy is defined by the numerator in the
fraction. This sparsity pattern is thus specified as RS→C1→C0(2:4).

As illustrated in Table 2, our proposed fibertree-based speci-
fication allows precise descriptions of many existing works that
were not easily distinguishable using conventional sparsity pattern
classification techniques.

4 HSS
With the fibertree-based sparsity specifications, it is clear that exist-
ing works in Table 2 all propose to apply different sparsity pattern(s)
to one rank. A natural approach to enhance such works to represent
more sparsity degrees would be to introduce sparsity patterns to

Figure 5: Fibertree-based specification for an example two-
rank HSS with RS→C2→C1(3:4)→C0(2:4). Please note that,
for general HSS patterns, the choices of number of ranks,
rank ordering, flattening, and splitting are not limited to the
ones presented in this example.

multiple ranks, motivating our proposed concept of hierarchical
structured sparsity (HSS).

4.1 General Concept
HSS allowsmultiple ranks to be sparse, where each rank has its own
sparsity pattern(s). Such a hierarchy of sparsity patterns could lead
to structured sparsity with more sparsity degrees than only one
rank with a very flexible sparsity pattern. Since HSS allows more
than one rank to be assigned with sparsity patterns, we introduce
the parameter N which describes the number of ranks with sparsity
patterns assigned. For each rank n where 0≤n≤N-1 and N≥1, a G:H
pattern is assigned. G:H ratios can be different for different ranks.
We call an instance of HSS that contains N ranks with sparsity
patterns assigned an N-rank HSS (e.g., in Fig. 5, there are four
ranks in the fibertree, and two of them have dedicated G:H sparsity
patterns, so we call it a two-rank HSS).

4.1.1 Fibertree-based Specification. To more concretely illustrate
the idea of HSS, we will refer to the fibertree-based specification
of the two-rank HSS pattern shown in Fig. 5. However, for general
HSS patterns, the choices of rank ordering, flattening, and splitting
are not limited to the ones shown in this example.

The example HSS pattern orders the ranks in R, S, C fashion,
similar to the one in Fig. 4(b). Unlike in Fig. 4(b), where the original
C rank is partitioned into two ranks, the example HSS pattern parti-
tions the original C rank into three ranks C2, C1, and C0, and assigns
3:4 and 2:4 to the lowest two ranks, i.e., C1 and C0. Such a two-
rank HSS pattern can be described as RS→C2→C1(3:4)→C0(2:4).
As shown in Table 4, the specification has more than one rank with
pruning rules assigned, resulting in qualitatively different sparsity
patterns compared to existing DNN sparsity patterns.

4.1.2 Sparsity Degrees. Different ranks in a multi-rank HSS have
sparsity patterns with different granularity. For example, in Fig. 5,
the lowest C0 rank’s 2:4 structure is based on a single-value gran-
ularity. Whereas the higher C1 rank’s 3:4 structure is based on a
larger granularity that’s the shape of the lower fiber. Thus, the 3:4
ratio describes whether a fiber payload of each coordinate must
contain all zeros or can contain nonzeros.

The overall sparsity degree of an HSS tensor can be derived
from its sparsity structures at each rank. For example, the two-
rank HSS RS→C2→C1(3:4)→C0(2:4) in Fig. 5 has a sparsity of
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Figure 6: Comparison of designs with the same flexibility (15 sparsity degrees across 0%-87.5%) but different numbers of
ranks. SS shows great potential for high flexibility and efficiency. (a) Design attributes and normalized processing latency
(markers indicate the discrete sparsity degrees.) (b) Normalized muxing overhead. (c) High-level architecture of HighLight,
with modularized SAFs for each rank at different architecture levels.

1 − 3
4 × 2

4 = 0.625. In general, the overall sparsity degree can be
expressed as 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −∏𝑁−1

𝑛=0
𝐺𝑛

𝐻𝑛
, where Gn:Hn is the ratio

assigned to rank 𝑛. Thus, by assigning a different number of ranks
and different G:H ratios at each rank, HSS allows a flexible and
systematic expression of various overall sparsity degrees.
Note: for ease of presentation, we will succinctly specify all
sparsity patterns with only the ranks with sparsity patterns,
e.g., RS→C1→C0(2:4) is simplified to C0(2:4).

4.2 DNN Sparsification with HSS
Similar to all existing DNN sparsity patterns, HSS patterns can be
introduced into DNNs to produce sparse DNN models. The goal for
HSS-based sparsification is to ensure the most important nonzero
values are preserved as much as possible.

To achieve the goal, we sparsify a dense tensor rank-by-rank
in a lower-to-higher fashion. For example, for a C1(3:4)→C0(2:4)
HSS, we first apply the rank C0’s 2:4 pattern and then rank C1’s
3:4 pattern. For the lowest rank, we sparsify the values with the
smallest magnitude. For an intermediate rank, we prune coordinates
whose fiber payload has the smallest scaled L2 norm, defined as the
average magnitude of all values in the payload. Depending on the
per-rank sparsity patterns, the flexibility of HSS allows us to obtain
sparse models with diverse sparsity degrees.

Since the introduced sparsity pattern is orthogonal to the prun-
ing algorithm choice (e.g., pruning on trained dense model [32],
pruning from scratch [59], pruning with value revival [29], etc.), it
is the algorithm designer’s freedom to decide whether the ranks
are sparsified at once or gradually sparsified over the process. As
we will show in Sec. 7, even with a traditional pruning algorithm, a
DNN with HSS patterns can maintain reasonable accuracy.

5 HIGHLIGHT OVERVIEW
HSS unveils an organized HSS-based hardware design space, where
each design can be systematically developed by considering three
aspects for each HSS operand:
• G:H patterns supported at a rank.
• the number of HSS ranks supported by the hardware.
• the acceleration techniques, referred to as sparse acceleration
features (SAFs) [54], supported at each rank.

In this section, we motivate HighLight’s high-level architecture by
discussing the impact of making different design decisions for the
above design aspects.

5.1 Impact of Supported SAF at Each Rank
The accelerator can have different supported SAFs at a rank to
translate sparsity into different savings. Specifically, when there
are ineffectual operations, the hardware can employ
• Gating: lets the hardware stay idle to save energy. Gating often
involves a trivial sparsity tax, e.g., an AND gate.

• Skipping: fast forwards to the next effectual operation to save
energy and time. Skipping incurs a higher sparsity tax, e.g.,
muxing logic for leader-follower intersections.

Since gating is undesirable for many latency-sensitive applications,
we will focus on discussing the impact of various design aspects
assuming skipping as the supported SAF.

Skipping is highly reliant on high utilization of the components
to achieve the desired speedup, so it is desirable to support G:H
patterns with a fixed (set of) G that is a factor of the number of
parallel hardware units (e.g., with four processing elements (PEs),
it is desirable to support G=4 patterns, as all PEs can be utilized
with the four nonzeros in the block of H values, regardless of what
H is). As a result, as shown in Fig. 6(a), the example designs with
skipping SAFs support sparsity patterns with a fixed G value of
two at each rank.
Takeaway: it’s more desirable to support skipping, which
favors G:H patterns with a G that’s a factor of the available
number of hardware instances to more easily ensure work-
load balancing with a high hardware utilization.

5.2 Impact of Per-rank Supported Patterns
To implement skipping for a G:H pattern, additional hardware
is needed. For example, Fig. 7(a) shows a dot product workload
with two vectors: vector 0 (v0) is 4:8 sparse, and vector 1 (v1) is
dense. In order to only perform effectual computations, i.e., skip the
ineffectual computations, the accelerator needs 8-to-4 muxing logic
to select the correct v1 values. Specifically, as shown in Fig. 7(b), the
8-to-4 muxing logic can be implemented with four 8-to-1 muxes. For
example, the first 8-to-1 mux selects A based on a ’s coordinate
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Figure 7: (a) Effectual computations in a dot product with
2:4 sparse vector 0 (v0) and dense vector 1 (v1). (b) Implemen-
tation of the muxing logic for selecting four values from a
block of eight values.

0 . To ensure low latency, an 8-to-1 mux can be implemented with
two 4-to-1 muxes pipelined with a 2-to-1 mux.

Since an accelerator can be designed to support multiple G:H
patterns with different H values, the muxing sparsity tax increases
as the largest supported H value, i.e., Hmax, increases. Specifically,
in order to support all possible patterns, the accelerator needs G
number of Hmax-to-1 muxes.
Takeaway: with a fixed G, the energy and area sparsity tax
increases approximately linearly with Hmax.

5.3 Impact of Supported Number of Ranks
Given a target number of sparsity degrees to represent, supporting
more HSS ranks reduces the Hmax at each rank, reducing the spar-
sity tax. Specifically, due to the nature of fraction multiplications,
multi-rank HSS can easily represent a large number of sparsity
degrees with a much smaller Hmax at each rank by exploiting the
composability of sparsity patterns. As shown in Fig. 6(a), with both
designs supporting 15 different sparsity degrees across 0% to 87.5%,
compared to the one-rank HSS design S, which requires a Hmax of
16, the two-rank HSS design SS only requires Hmax of 8 at Rank1
and a Hmax of 4 at Rank0.

The sparsity support of a multi-rank HSS design is implemented
at different architecture levels, each of which targets a specific rank
(e.g., in Fig. 6(c), the processing element (PE) array level implements
Rank1 SAF to exploit Rank1 patterns and the PE level implement
Rank0 SAF to exploit Rank0 patterns). Fig. 6(b) shows the normal-
ized sparsity tax for the two HSS designs in terms of their muxing
overhead. Due to the reduced Hmax values at each rank, SS intro-
duces > 2× less muxing overhead, i.e., lower sparsity tax, while
representing the same number of sparsity degrees as S.
Takeaway: Compared to the popular one-rankHSS supported
in many existing works, hardware designed for multi-rank
HSS can represent the same number of sparsity degrees with
much lower sparsity tax.

5.4 High Level Architecture
Fig. 6(c) shows the high-level architecture organization of our pro-
posed HighLight accelerator, a simultaneously efficient and flexi-
ble accelerator consisting of a memory hierarchy and 1024 MACs

Figure 8: (a) Convolution represented as matrix multipli-
cation with flattened operand A (weights) and Toeplitz ex-
panded operand B (input activations) [44]. M: number of fil-
ters; C: # of channels; R,S: height and width of filter kernels;
P,Q: height and width of outputs. (b) Loopnest representation
of HighLight’s dataflow.

grouped into four PE arrays. HighLight supports DNNs with two-
rank HSS weights and unstructured sparse input activations. In
terms of SAF choices, HighLight implements modularized skipping
SAFs at different architecture levels to translate the two-rank HSS
into energy and latency savings, and performs gating on input
activation’s sparsity to further reduce energy consumption.

6 A DEEPER DIVE INTO HIGHLIGHT
In this section, we present more details on HighLight’s micro-
architecture implementations. For ease of presentation, we will
use a down-sized architecture with two PEs and sparsity sup-
port for C1 (2:{2≤H≤4})→C0(2:4) to discuss the core ideas of
the HighLight micro-architecture.

6.1 DNNs Processed as Matrix Multiplication
We design HighLight to process various layers in DNNs as matrix
multiplications (MM) workloads (as shown in Fig. 8(a), convolu-
tional layers are flattenedwith Toeplitz expansion on the inputs [44]
before sending to the accelerator for processing), as many exist-
ing works do [25, 30, 36, 37, 48, 60]. Thus, DNN layers with MM
kernels (e.g., fully connected layers) are represented as they orig-
inally are. Whereas, as shown in Fig. 8(a), convolutional layers
are represented as MM by flattening the weight dimensions and
performing a Toeplitz expansion on the inputs [44] before sending
to the accelerator for processing. Processing all layers as matrix
multiplications implies interchangeable operands. Hence, instead
of referring to the operands as weights and input activations, we
refer to them as operands A and B, where operand A is dense or
HSS, and operand B is either dense or unstructured sparse.

6.2 Compression Format for HSS
To correctly eliminate ineffectual hardware operations, i.e., buffer
accesses and computes associated with zeros, it is important to
capture both ranks’ sparsity structure with metadata. HighLight
uses an offset-based coordinate representation (CP) [54] format to
describe the position of nonzero values/non-empty blocks at each
rank. Fig. 9 shows the metadata for an example C1(2:4)→C0(2:4)
operand A tensor. For Rank0, each nonzero value carries a CP to
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Figure 9: Hierarchical CP compression for operand A row.

Figure 10: Down-sized architecture organization of High-
Light with hierarchical skipping SAF. The showcased pro-
cessing flow is for the example C1(2:4)→C0(2:4) operand A
in Fig. 9 and a dense operand B. Matched capitalized and
lower case letters indicate corresponding values. Boxes with
triangles are registers.

indicate its position in its block of H0 values (e.g., since a is at the
first position in its block, it carries a 0 metadata). For Rank1, each
nonzero block carries a CP to indicate its relative position in the
H1 blocks (e.g., the first and third blocks have nonzeros and thus
carry upper-level metadata 0 and 2 .)

6.3 Hierarchical Skipping
To achieve high utilization of the hardware, and thus fast processing
speed, HighLight employs a hierarchical skipping technique, i.e.,
both Rank1 SAF and Rank0 SAF perform skipping based on their
target rank’s sparsity structure, as shown in Fig. 10. Thus, High-
Light’s total speedup is the product of the speedup introduced
at each rank. To illustrate the ideas, we use the C1(2:4)→C0(2:4)
operand A shown in Fig. 9 and a dense operand B as an example
workload. We will discuss sparse B operand support in Sec. 6.4.

6.3.1 HSS-Operand Stationary Dataflow. Before diving into the
SAFs, we discuss the general processing flow of HighLight by pre-
senting its dataflow, which defines an accelerator’s scheduling of
datamovement and compute in space and time [5, 40]. To exploit the
statically known sparsity structure to introduce desirable workload
balancing, HighLight employs an HSS-operand stationary dataflow,
where each Rank0 block of A is held stationary in each PE for reuse
across different operand B values. As shown in Fig. 10, PE0 holds
stationary in registers the two nonzero values a , c in the first
block of operand A. Each MAC in the PE is responsible for working
on one of the G nonzeros in its assigned block, specifically, the
MAC on the left in PE0 works on a , and the right MAC works

Figure 11: (a) Operand B memory layout in GLB. (b) Operand
B datamovement between GLB and Variable Fetch Man-
agement Unit (VFMU) for the first three processing steps
when operand A has a 𝐶1(2:3) sparsity. To output the correct
operand B blocks, VFMU is configured to shift by 12 values
(three blocks) per read. out points to blocks that VFMU out-
puts to the muxing logic in the step.

on c . The partial sums calculated at each MAC are first spatially
accumulated across the PEs in the same row and updated to the
Register File. More dataflow details are described in Fig. 8(b) based
on the well-known loopnest representation [5, 40, 44].

6.3.2 Skipping SAF at Rank1. HighLight’s Rank1 Skipping SAF ex-
ploits the sparsity structure in Rank1 only. Specifically, it is respon-
sible for only distributing non-empty Rank1 blocks in operand A
and the corresponding blocks in operand B to the PEs for parallel
processing, e.g., as shown in Fig. 10, only the nonzeros in the first
block (i.e., a , c ) and the third block (i.e., j , k ) in operand A are
transferred to be processed at the PEs. Since only half of the Rank1
blocks are non-empty in the example tensor, Rank1 Skipping SAF
introduces a 2× speedup. Other sparsity patterns (degrees) in rank
1 can be exploited similarly to achieve different speedups.

Recall that Rank1 Skipping SAF is required to support sparsity
patterns defined by C1 (2:{2≤ H≤4}). To maintain high utilization
for different sparsity patterns (degrees), each of the two PEs in
Fig. 10 should always get a non-empty block of operand A. To
ensure correctness, different operand B data need to be selected for
computation for different supported sparsity patterns. For different
H values at Rank1, a different number of operand B blocks need to
be selected from at each processing step. For example, as shown
in Fig. 10, four blocks (b0, b1, b2, and b3) need to be selected for
operand A having HSS patterns with H=4).

However, due to the fixed physical dimensions of the GLB, each
GLB fetch has to be fixed to a certain number of blocks. As shown in
the example GLB memory layout in Fig. 11, each GLB row contains
16 data words from a dense operand B (i.e., four Rank1 blocks).
To avoid unaligned GLB fetches for different H1 values, as shown
in Fig. 10, HighLight’s Rank1 Skipping SAF employs a Variable
Fetch Management Unit (VFMU ) to allow variable length streaming
access, which is a technique commonly used for bitstream parsing
(e.g., in the entropy coding for video compression [7, 43]). More
specifically, VFMU includes a small buffer that stores the 2×Hmax
blocks of operand B. The buffer is written with data that are fetched
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from GLB in an aligned fashion and can be configured with a shift
signal to determine the offset position for the current read to start.
Fig. 11 describes the data movement between GLB and VMPU for
the first three processing steps when operand A has a G:H=2:3
sparsity at C1. The shift signal is configured to three blocks (i.e.,
12 values) to allow the correct operand B blocks to be read out.
Note that to keep the output width uniform, there are always four
blocks read out of the VMPU. However, in the case of G:H=2:3, the
last block is just a dummy padding that will never be selected by
the muxing logic in Rank1 Skipping SAF. The VMPU processing is
trivial to show for operand A with G:H=2:4, as all accesses are well
aligned. Such variable fetch support allows correct operand B to be
fetched for different 2:H structures.

With the correctly shifted blocks, to avoid implementing wide
muxes that select from the entire blocks of data, VFMU employs
4-to-2 muxes to select the correct pair of start and end addresses
using the metadata from operand A. The addresses are used to
index into VFMU’s internal registers.

6.3.3 Skipping SAF at Rank0. As discussed above, each PE in High-
Light works on a non-empty Rank1 block with C0(2:4). To keep the
twoMACs busy in each PE, HighLight employs Rank0 skipping SAF
with 4-to-2 muxing logic. As shown in Fig. 10, based on Rank0’s CP
metadata, the 4:2 mux in each PE selects the correct operand B for
each MAC.

6.4 Exploiting Operand B Sparsity
So far, we have used a dense operand B in our example workloads to
illustrate HighLight’s processing flow. However, in DNNworkloads,
operand B for can be sparse due to non-linear activation functions
(e.g., ReLU) and/or activation pruning [30, 55]. HighLight exploits
unstructured sparse operand B through compression and gating.

We again use the C1(2:3)→C0(2:4) example to present the hard-
ware support. As shown in Fig. 12(a), when compressed, only the
nonzero Operand B values are stored in the GLB. Operand B carries
three levels of metadata that hierarchically encodes the nonzero
value locations. Specifically, the metadata includes: (1) the total
number of nonzeros for every set of Rank1 blocks (three in C1(2:3));
(2) end addresses of each Rank1 block; (3) the intra-Rank0-block
offset for each nonzero value. For intermediate layers, such com-
pression on a previous layer’s output activation is performed by
the compression unit after the activation function unit in Fig. 10 to
prepare for the processing for the next layer.

Since different Operand B blocks have different occupancy, in-
stead of always assuming a fixed shift amount as in the case of a
dense operand B, the VFMU assigns the shift to be the encoded off-
set for each set of Rank1 blocks. For example, as shown in Fig. 12(b),
the shift at step1 is configured to 8 as the first three Rank1 blocks
have a total of 8 nonzero values. Furthermore, if there are enough
data words stored in VMFU for the next processing step, the GLB
fetch is not performed (e.g., at step 2 in Fig. 12, VFMU has 13 valid
entries, and the next processing step only needs 8, so no GLB fetch
is performed at the step). Such a mechanism allows the metadata
information to catch up with the fetched nonzeros from GLB.

The gating SAF is applied to Operand B’s Rank0 sparsity to save
energy by letting the MAC unit in each PE stay idle when there is
no effectual operation to perform. Note that since the gating SAF

Figure 12: (a) Compressed operand B memory layout in GLB
and the metadata associated with the first three blocks. (b)
Operand B datamovement between GLB and VFMU for the
first four processing steps when operand A has a 𝐶 − 1(2:3)
sparsity. VFMU shifts based on the number of nonzeros en-
coded in the metadata for each set of Rank1 blocks. GLB
fetches are only performed when the number of valid data in
VFMU cannot meet the need for the next set of Rank1 blocks.

does not change the number of cycles spent, it still keeps the PEs
in sync, and thus the partial sum accumulation inside each PE and
across PEs is not impacted by the support for sparse Operand B.

7 EXPERIMENTAL RESULTS
In this section, we discuss our experimental setup and present
results related to the co-designed hardware (i.e., HighLight) and
the software (i.e., HSS-based sparsification).

7.1 Methodology
7.1.1 Baseline designs. Given the abundant prior designs, we com-
pare HighLight to state-of-the-art representative designs that cap-
ture the key properties of each category described in Table 1.
• TC [36] represents dense accelerators (e.g., [4, 25, 36]), which
are oblivious of the potential benefits introduced by sparsity.

• STC [37] represents single-sided G:H structured sparse accel-
erators (e.g., [37, 60]), which introduce considerable efficiency
benefits at a reasonable sparsity tax, but often support a limited
number of sparsity degrees.

• S2TA [30] represents dual-sided (i.e., both operands) G:H struc-
tured sparse accelerators, which improve on the single-sided
designs with additional efficiency gains from the second sparse
operand, but can introduce higher sparsity tax.

• DSTC [52] represents dual-sided unstructured sparse acceler-
ators (e.g., [8, 14, 41, 52, 57]), which often have high flexibility
but introduce considerable sparsity tax.

Table 3 describes more details on each design’s supported sparsity
structures (if any) for each operand.
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Design
Supported Sparsity Patterns

Operand A Operand B
TC [36] dense
STC [37] dense; C0 ({G≤2}:4) dense
DSTC [52] dense; unstructured sparse
S2TA [30] C0 ({G≤4}:8) C0 ({G≤8}:8)
HighLight
(our work)

C1 (4:{4≤ H≤8})→C0 (2:{2≤ H≤4})
dense;

unstructured sparse
Table 3: Supported sparsity patterns for each design.

Design
Storage

Compute
GLB RF

TC [36] 320KB
4 × 2 KB 4 × 256STC [37] 256 + 64KB

DSTC [52] 256 + 64KB
S2TA [30] 256 + 64KB 64 × 64B 64 × 16

HighLight (our work) 256 + 64KB 4 × 2KB 4 × 256

Table 4: Hardware resource allocation. GLB is partitioned to
data and metadata storage for sparse designs.

To ensure fairness, as shown in Table 4, we allocate similar stor-
age and compute resources to all designs. For designs that support
compression of sparse input activations (i.e., DSTC, S2TA, and High-
Light), the same-style compression unit support as shown in Fig. 10
is applied to reduce DRAM traffic. Furthermore, all accelerators are
designs that process DNNs as matrix multiplications. Since matrix
multiplications accelerators treat the two operands interchange-
ably, we allow them to swap operands and report the best hardware
performance (e.g., since STC benefits from sparse operand A, we
swap the operands if operand B is sparse and A is dense).

7.1.2 Workloads. We evaluate two classes of workloads: (i) Syn-
thetic matrix multiplicationwith operand A and B matrices that
are 1024-by-1024, a common shape in DNN workloads. A and B are
of various sparsity degrees: three different degrees for A: 0%, 50%,
75%, and four different degrees for B: 0%, 25%, 50%, 75%. Synthetic
workloads allow us to capture the diverse sparsity characteristics
in the DNN design space. (ii) Representative DNN models with
distinct network architectures and target applications: the convolu-
tional ResNet50 [16] and attention-based Deit-small [47] for image
classification trained on ImageNet [12] and the attention-based
Transformer-Big [50] for language translation trained on WMT16
EN-DE [3]. Actual DNN models allow us to take both accuracy and
hardware performance impact into the picture.

7.1.3 Evaluation Frameworks. Accelerator Modeling: we use the
Sparseloop-Accelergy infrastructure [53, 54] to model the accel-
erators. Sparseloop captures each accelerator’s cycle counts and
component runtime activities. We added a new density model to
Sparseloop to capture the characteristics of HSS.

To characterize energy and area costs, we built 65nm Accelergy
estimation plug-ins to characterize various components:

• HighLight’s design-specific SAF implementations (i.e., mux-
ing logic and VFMU) and datapath components (e.g., adders,
multipliers): synthesized RTL.

• Small SRAMs: SRAM compiler.
• Large SRAMs not supported by compiler: CACTI [13].
• DRAM: propriety commercial data for LPDDR4.

All accelerator designs are evaluated with the same evaluation
framework to ensure fairness.

DNN Pruning:We use Condensa [24] to introduce various spar-
sity patterns to various DNNs, structured or unstructured. Since
a good set of sparsity patterns should allow reasonable accuracy
recovery even without novel or advanced pruning algorithms (e.g.,
special ways to perform hyper-parameter searches), we reuse the
pruning algorithm proposed for sparse tensor core (STC) [32].
Specifically, the algorithm for STC first statically prunes a pre-
trained dense DNN by masking the appropriate weights and their
gradients to zeros based on sparsity-pattern-specific sparsification
rules (e.g., the HSS-based rules in Sec. 4.2), and it then fine-tunes
the masked DNN to regain accuracy. To ensure fairness, all of our
performed pruning follows the same algorithm, and the same set of
hyperparameters is used for all sparsity patterns.

7.2 Outperforms Prior Work
We compare HighLight to existing designs running synthetic work-
loads to demonstrate its flexibility and efficiency. Specifically, its
ability to always achieve high processing efficiency for workloads
with varying sparsity degrees.

Fig. 13 compares the processing latency, energy consumption,
and energy-delay product (EDP), a widely used metric for evalu-
ating overall hardware performance in many existing works [20,
22, 28]. As shown in Fig. 13, different existing designs introduce
inefficient processing at different sparsity degrees. Specifically, (i)
STC employs simple acceleration with low sparsity tax for dense
and 50% sparse workloads. However, STC’s limited sparsity support
fails to exploit the available opportunities for both speedup and
energy for high sparsity workloads. (ii) DSTC introduces signif-
icant sparsity tax to identify effectual operations. Specifically, it
employs a dataflow that requires a costly accumulation buffer that
is frequently accessed. Thus, DSTC’s high sparsity tax masks the
sparsity-related savings for workloads with low sparsity. Further-
more, DSTC also suffers from a not perfectly balanced workload
due to the unpredictable nature of unstructured sparsity, i.e., not
all compute units are active. (iii) S2TA requires both operands to
be structured sparse and has limited flexibility on the G values sup-
ported for each operand. For example, as shown in Table 4, S2TA
requires one of the operands to have {G≤4}:8, i.e., cannot have more
than 50% sparsity. Thus, S2TA often fails to support or does not
fully exploit the available speedup for workloads with operands
that have low or medium sparsity.

On the other hand, HighLight is always able to efficiently
exploit various sparsity degrees. HighLight’s per-rank skipping
SAF and low-overhead hierarchical compression format introduce
brings low sparsity tax, specifically low energy overhead. Further-
more, due to the structured sparsity, HighLight always achieves the-
oretical speedup with perfect workload balancing. Thus, as shown
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Figure 13: Comparison of existing designs running workloads with operands with different sparsity degrees. We compare the
overall hardware efficiency energy-delay-product (EDP), energy and speed of the designs. S2TA [30] assumes both operands are
structured. HighLight is always able to effectively exploit diverse sparsity degrees. *HighLight evaluated with 20% sparsity for
conservative estimations.

in Fig. 13, HighLight always achieves the best EDP and comparable-
to-best processing speed for all evaluated sparsity degrees. High-
Light achieves the best geomean for all evaluated metrics.

Fig. 14 shows each metric’s geomean across the evaluated work-
loads. Compared to existing designs, HighLight achieves bet-
ter geomean for all evaluated metrics.

7.3 Good Accuracy-Efficiency Trade-offs
To demonstrate HighLight provides good trade-offs between ac-
curacy and efficiency, we compare the EDP-accuracy loss rela-
tionship of various design approaches, as shown in Fig. 15. Specifi-
cally, we compare HighLight to multiple popular existing co-design
approaches: 1) dense (represented by the TC data points); 2) un-
structured sparse (represented by the DSTC data points); 3) C0(G:H)
sparse (represented by the STC and S2TA data points).

We evaluate three representative DNNs: ResNet50 [16], Deit-
small [47], and Transformer-Big [50]. For ResNet50, we prune all
convolutional and fully-connected layers. For Deit-small, we pruned
the feed-forward block and the output projection weights. For

Figure 14: Geomean of various metrics. HighLight achieves
the best geomean across all evaluated metrics.

Transformer-big, we prune the feed-forward block and all projec-
tion weights. To ensure fairness, we use the same pruning algorithm
as described in Sec. 7.1.3 for all of the evaluated sparsity patterns,
including both structured and unstructured.
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Figure 15: EDP-Accuracy Loss Pareto frontier for
ResNet50 [16], Transformer-Big [50], and Deit-small [47].
Different markers refer to different accelerators. HighLight
is always on the accuracy-EDP Pareto frontier and thus
serves as a great candidate to support diverse DNNs with
high hardware efficiency while maintaining accuracy.

Fig. 15 shows the EDP-accuracy loss relationship for the three
DNN models, with their weights pruned to different sparsity de-
grees. Ideally, we would like to always have very low EDP and
accuracy loss. Unfortunately, low EDP often requires higher spar-
sity and thus leads to higher accuracy loss. The best design should
excel at balancing the trade-off, thus always sitting on the Pareto
frontier of the EDP-accuracy loss relationship. Furthermore, the
design should excel at the evaluated DNNs, which have different
sparsity characteristics. Specifically, ResNet50 has much sparser ac-
tivations than Transformer-big and Deit-small, and Deit-small has
much fewer layers being pruned due to its already small parameter
count (compared to other vision transformers).

As shown in Fig. 15, HighLight always sits on the Pareto frontiers.
STC only delivers great accuracy-efficiency trade-off only at a single
sparsity degree (i.e., 50% sparse), S2TA fails to support attention-
based models due to its incapability to process purely dense layers,
and DSTC can introduce worse-than-dense EDP due to its high
sparsity tax for the relatively dense models. Thus, HighLight
serves as a great accelerator candidate to support diverse

Figure 16: (a) Energy consumption breakdown for a workload
with 75% sparse operand A and dense operand B. (b) High-
Light area breakdown. HighLight introduces low sparsity tax
in terms of both energy and area.

DNNs with high hardware efficiency while maintaining a
reasonable accuracy loss.

7.4 Sparsity Tax Evaluation
Sparse DNN accelerators involve two types of sparsity tax: energy
and area. Fig. 16(a) shows the energy cost breakdown across differ-
ent components in different architectures processing an example
workload with 75% operand A and a dense operand B (i.e., one ex-
ample set of bars from Fig. 13). Existing designs either do not fully
exploit the sparsity for energy savings (e.g., STC only recognizes
upto 50% sparsity) or introduce inefficient dataflows to trade-off
its insignificant SAF cost (e.g., DSTC suffers from significant ac-
cumulation traffic at RF due to its outer produce style dataflow).
Fig. 16(b) shows the area breakdown of HighLight, with the SAFs
accounting for only 5.7% of the design’s area. Note that since spar-
sity tax is intrinsic to the hardware design, different workloads
would not change the general amount of sparsity tax introduced2.
Thus, HighLight has low sparsity tax.

7.5 Potential Benefits of Dual-Side HSS
Exploiting sparsity in both operands for speedup, i.e., dual-side
speedup, is highly desirable but often requires complex intersection
hardware and workload balancing techniques. To address such a
challenge, we make the observation that, with low intersection
sparsity tax and easy workload balancing, hierarchical structured
sparsity can also potentially be used to achieve dual-side speedup.
In this section, we will discuss the potential benefits such improve-
ments could bring to motivate more studies on fully supporting
dual-side HSS workloads.

An HSS-based accelerator can achieve dual-side speedup with
easy workload balancing by supporting multi-rank HSS operands
with alternating dense ranks, e.g., weights with C1(dense)→C0(2:4)
and input activations (iacts) with C1(2:4)→ C0(dense). To identify
the nonzero value locations, each operand only needs to carry
the offset metadata for the rank with G:H sparsity. For example,
weights with C1(dense)→C0(2:4) carry offset metadata for each
nonzero value to identify its relative position in its C0 block, and
iacts with C1(2:4)→ C0(dense) carry offset metadata for each C0
block to identify its relative position in each C1 block.
2Themetadata costs differ based onworkload sparsity, but such cost is not the dominant
source of sparsity tax in the evaluated designs.
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Figure 17: Normalized processing speed of HighLight and
the dual structured sparse operand (DSSO) design. The DSSO
design supports dual-side HSS with alternating dense ranks
and allows dual-side speedup.

With the alternating dense ranks, both operands are never sparse
at the same rank; therefore, the SAF at each rank only needs to
perform dense-sparse intersections. For instance, for C1, skipping
can be performed by intersecting C1(2:4) in iacts with C1(dense) in
weights. For C0, skipping can be performed by intersecting C0(2:4)
in weights with C0(dense) in iacts. Such dense-sparse intersections
by nature lead to a perfectly balanced workload [11]. We refer
to the accelerator design that supports dual-side HSS as the dual
structured sparse operands (DSSO) design.

Fig. 17 compares the processing speed of HighLight andDSSO for
workloads with operand A (weights) with C1(dense)→C0(2:4) and
operand B that follows C1(2:2≤H≤8)→C0(dense). DSSO demon-
strates interesting trade-offs compared to singled-sided HSS. As
shown in Fig. 17, DSSO achieves 2× better processing speed
compared to HighLight for the commonly supported sparsity
degrees. However, since DSSO requires one rank to be dense to
enable perfect workload balancing, there are fewer sparsity degrees
supported for operand B.

As currently proposed, the HighLight design does not naively
support the dual-side HSS configuration. Specifically, HighLight
does not discuss the hardware support needed to prune and com-
press the output activations of each layer into the desired HSS
format. In addition, although existing works have shown that it is
possible for DNNs with dual structured sparse operands to maintain
accuracy [9, 30, 55], such DNNs may still require more advanced
pruning techniques to recover accuracy. Thus, there remain many
interesting research questions to answer regarding complete dual-
side HSS support in both hardware and pruning algorithms.

8 RELATEDWORK
There is ample prior work in designing accelerators for efficiently
processing sparse DNNs. These works either focus on co-designing
sparsity patterns and hardware or solely focus on hardware for ex-
isting pruned models. Co-design approaches involve pruning DNNs
to structured sparsity patterns that can be easily exploited by the
underlying hardware. The target underlying system can be existing
dense systems (maybe with relatively minor ISA updates) [10, 17,
35, 46, 59], e.g., GPUs, or custom accelerators [27, 30, 37, 49, 60] de-
signed for the sparsity structure. The accelerators can be designed
either with conventional digital technology or emerging technol-
ogy, e.g., processing-in-memory accelerators [49]. To better recover

accuracy loss due to the enforced structure, some proposals have
relatively relaxed structures and pre-process the pruned models
into more compact structures before sending them to hardware, e.g.,
pack unstructured columns into compact blocks [27]. Since struc-
tured sparsity has static nonzero values locations, the accelerators
often have a low sparsity tax but low flexibility.

On the other hand, accelerators designed for existing pruned
models or general sparse matrix multiplications often involve de-
signing flexible sparsity support for unstructured sparsity [6, 8,
14, 19, 26, 39, 41, 42, 56–58]. Since supporting dynamic nonzero
value locations requires extremely flexible hardware, these designs
often focus on different dataflows that reduce complexity, efficient
auxiliary components (e.g., fast intersection unit [19]) that alleviate
the significant control overhead, etc. Nonetheless, such accelera-
tors often rely on the assumption that unstructured pruning can
introduce very high (> 80%) sparsity, which can cancel out the cost
of high sparsity tax.

The concept of hierarchy is also used in compressed data rep-
resentations [19, 26, 51]. However, this line of work often focuses
on better workload partitioning to enable efficient hardware pro-
cessing, instead of using the hierarchy to provide flexibility and/or
modularity, which is the goal of HSS. In fact, their proposed sparsity
patterns are often unstructured or one-rank structured sparse (e.g.,
SMASH [26] employs two levels of bitmask to represent unstruc-
tured sparse tensors), and target HPC/Graph analytics applications,
which often have much higher sparsity degrees, and thus are less
sensitive to high sparsity tax than DNNs.

9 CONCLUSION
Various optimization techniques introduce DNNs with diverse spar-
sity degrees. The diversity challenges the assumptions made by ex-
isting DNN accelerators, which often trade flexibility for efficiency,
or vice versa. This paper addresses the importance of balancing
accelerator flexibility and efficiency by proposing a novel class
of DNN sparsity patterns, hierarchical structured sparsity (HSS),
which leverages the multiplication of fractions to systematically
represent diverse sparsity degrees. Leveraging the modularity of
HSS, we developed HighLight to achieve flexible sparsity support
with low sparsity tax. In conjunction, we show that HSS allows
DNN developers to prune DNNs to diverse degrees while main-
taining desired accuracy levels. Compared to dense accelerators,
HighLight achieves a geomean of 6.4× (and up to 20.4×) better
energy-delay product (EDP) across layers with diverse sparsity
degrees (including dense) and is at parity for dense DNN layers.
Compared to sparse accelerators, HighLight achieves a geomean of
2.7× (and up to 5.9×) better EDP and is at parity for sparse layers.
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