Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical switching of a bistable moiré superconductor

Abstract

Electrical control of superconductivity is critical for nanoscale superconducting circuits including cryogenic memory elements1,2,3,4, superconducting field-effect transistors (FETs)5,6,7 and gate-tunable qubits8,9,10. Superconducting FETs operate through continuous tuning of carrier density, but no bistable superconducting FET, which could serve as a new type of cryogenic memory element, has been reported. Recently, gate hysteresis and resultant bistability in Bernal-stacked bilayer graphene aligned to its insulating hexagonal boron nitride gate dielectrics were discovered11,12. Here we report the observation of this same hysteresis in magic-angle twisted bilayer graphene (MATBG) with aligned boron nitride layers. This bistable behaviour coexists alongside the strongly correlated electron system of MATBG without disrupting its correlated insulator or superconducting states. This all-van der Waals platform enables configurable switching between different electronic states of this rich system. To illustrate this new approach, we demonstrate reproducible bistable switching between the superconducting, metallic and correlated insulator states of MATBG using gate voltage or electric displacement field. These experiments unlock the potential to broadly incorporate this new switchable moiré superconductor into highly tunable superconducting electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device characterization.
Fig. 2: Dual-gate maps of longitudinal resistance.
Fig. 3: Characterization of robust superconductivity.
Fig. 4: Electrical switching of MATBG states and superconductivity.

Similar content being viewed by others

Data availability

The data shown in the paper are available at: https://doi.org/10.7910/DVN/FPHFDS. All other relevant data of this study are available from the corresponding authors upon reasonable request.

References

  1. Baek, B., Rippard, W. H., Benz, S. P., Russek, S. E. & Dresselhaus, P. D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 5, 3888 (2014).

    Article  CAS  Google Scholar 

  2. Gingrich, E. C. et al. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve. Nat. Phys. 12, 564–567 (2016).

    Article  CAS  Google Scholar 

  3. Sardashti, K. et al. Voltage-tunable superconducting resonators: a platform for random access quantum memory. IEEE Trans. Quantum Eng. 1, 1–7 (2020).

    Article  Google Scholar 

  4. Alam, S., Hossain, M. S., Srinivasa, S. R. & Aziz, A. Cryogenic memory technologies. Preprint at https://arxiv.org/abs/2111.09436 (2021).

  5. Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).

    Article  CAS  Google Scholar 

  6. De Simoni, G., Paolucci, F., Solinas, P., Strambini, E. & Giazotto, F. Metallic supercurrent field-effect transistor. Nat. Nanotechnol. 13, 802–805 (2018).

    Article  Google Scholar 

  7. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article  CAS  Google Scholar 

  8. Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article  CAS  Google Scholar 

  9. de Lange, G. et al. Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements. Phys. Rev. Lett. 115, 127002 (2015).

    Article  Google Scholar 

  10. Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article  CAS  Google Scholar 

  11. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  Google Scholar 

  12. Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6421 (2022).

    Article  Google Scholar 

  13. Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407(R) (2010).

    Article  Google Scholar 

  14. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  CAS  Google Scholar 

  15. Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article  Google Scholar 

  16. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article  Google Scholar 

  17. Luican, A. et al. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011).

    Article  CAS  Google Scholar 

  18. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  19. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  20. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  Google Scholar 

  21. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  CAS  Google Scholar 

  22. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article  CAS  Google Scholar 

  23. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  24. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  CAS  Google Scholar 

  25. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  CAS  Google Scholar 

  26. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

    Article  CAS  Google Scholar 

  27. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  28. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  CAS  Google Scholar 

  29. Yang, M., Yan, C., Ma, Y., Li, L. & Cen, C. Light induced non-volatile switching of superconductivity in single layer FeSe on SrTiO3 substrate. Nat. Commun. 10, 85 (2019).

    Article  CAS  Google Scholar 

  30. Taniguchi, H., Kanoda, K. & Kawamoto, A. Field switching of superconductor-insulator bistability in artificially tuned organics. Phys. Rev. B 67, 014510 (2003).

    Article  Google Scholar 

  31. Ahn, C. H. et al. Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7−x films. Science 284, 1152–1155 (1999).

    Article  CAS  Google Scholar 

  32. Takahashi, T. S. et al. Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature 441, 195–198 (2006).

    Article  CAS  Google Scholar 

  33. Rodan-Legrain, D. et al. Highly tunable junctions and non-local Josephson effect in magic-angle graphene tunnelling devices. Nat. Nanotechnol. 16, 769–775 (2021).

    Article  CAS  Google Scholar 

  34. de Vries, F. K. et al. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. 16, 760–763 (2021).

    Article  Google Scholar 

  35. Diez-Merida, J. et al. Magnetic Josephson junctions and superconducting diodes in magic angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2110.01067 (2021).

  36. Portolés, E. et al. A tunable monolithic SQUID in twisted bilayer graphene. Nat. Nanotechnol. 17, 1159–1164 (2022).

    Article  Google Scholar 

  37. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene. Nature 592, 43–48 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Ma and Z. Zheng for helpful discussions. This work was supported by the Air Force Office of Scientific Research 2DMAGIC MURI FA9550-19-1-0390 (D.R.K. and L.-Q.X.), the Army Research Office MURI W911NF2120147 (D.M.), and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF9463 to P.J.-H. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (JPMXP0112101001), JSPS KAKENHI (JP20H00354), and the CREST(JPMJCR15F3), JST. This work made use of the MIT MRSEC Shared Experimental Facilities, supported by the NSF (DMR-0819762), and of Harvard’s Center for Nanoscale Systems, supported by the NSF (ECS-0335765).

Author information

Authors and Affiliations

Authors

Contributions

D.R.K., L.-Q. X., D. M. and P.J.-H. conceived the project. D.R.K. and D.M. fabricated the devices. D.R.K., L.-Q. X. and D.M. carried out the transport measurements and analysed the data. K.W. and T.T. supplied the BN crystals. D.R.K., L.-Q. X., D. M. and P.J.-H. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Dahlia R. Klein or Pablo Jarillo-Herrero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Kam Tuen Law and Emanuel Tutuc for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, D.R., Xia, LQ., MacNeill, D. et al. Electrical switching of a bistable moiré superconductor. Nat. Nanotechnol. 18, 331–335 (2023). https://doi.org/10.1038/s41565-022-01314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01314-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing