Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photonic flatband resonances for free-electron radiation

Abstract

Flatbands have become a cornerstone of contemporary condensed-matter physics and photonics. In electronics, flatbands entail comparable energy bandwidth and Coulomb interaction, leading to correlated phenomena such as the fractional quantum Hall effect and recently those in magic-angle systems. In photonics, they enable properties including slow light1 and lasing2. Notably, flatbands support supercollimation—diffractionless wavepacket propagation—in both systems3,4. Despite these intense parallel efforts, flatbands have never been shown to affect the core interaction between free electrons and photons. Their interaction, pivotal for free-electron lasers5, microscopy and spectroscopy6,7, and particle accelerators8,9, is, in fact, limited by a dimensionality mismatch between localized electrons and extended photons. Here we reveal theoretically that photonic flatbands can overcome this mismatch and thus remarkably boost their interaction. We design flatband resonances in a silicon-on-insulator photonic crystal slab to control and enhance the associated free-electron radiation by tuning their trajectory and velocity. We observe signatures of flatband enhancement, recording a two-order increase from the conventional diffraction-enabled Smith–Purcell radiation. The enhancement enables polarization shaping of free-electron radiation and characterization of photonic bands through electron-beam measurements. Our results support the use of flatbands as test beds for strong light–electron interaction, particularly relevant for efficient and compact free-electron light sources and accelerators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flatband-resonance-mediated free-electron radiation.
Fig. 2: Boosting free-electron radiation from photonic flatbands.
Fig. 3: Measurement of radiation from flatbands.
Fig. 4: Polarization control of free-electron radiation.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are provided in the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Baba, T. Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008).

    Article  ADS  CAS  Google Scholar 

  2. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rakich, P. T. et al. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nat. Mater. 5, 93–96 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Park, C.-H., Son, Y.-W., Yang, L., Cohen, M. L. & Louie, S. G. Electron beam supercollimation in graphene superlattices. Nano Lett. 8, 2920–2924 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Pellegrini, C., Marinelli, A. & Reiche, S. The physics of x-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    Article  ADS  Google Scholar 

  6. De Abajo, F. G. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209 (2010).

    Article  ADS  Google Scholar 

  7. Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Shiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Friedman, A., Gover, A., Kurizki, G., Ruschin, S. & Yariv, A. Spontaneous and stimulated emission from quasifree electrons. Rev. Mod. Phys. 60, 471 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Schächter, L. Beam-Wave Interaction in Periodic and Quasi-Periodic Structures (Springer, 2011).

  12. de Abajo, F. G. et al. Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (2003).

    Article  ADS  Google Scholar 

  13. Lin, X. et al. Controlling Cherenkov angles with resonance transition radiation. Nat. Phys. 14, 816–821 (2018).

    Article  CAS  Google Scholar 

  14. Roques-Carmes, C. et al. Towards integrated tunable all-silicon free-electron light sources. Nature Commun. 10, 3176 (2019).

  15. Haeusler, U., Seidling, M., Yousefi, P. & Hommelhoff, P. Boosting the efficiency of Smith–Purcell radiators using nanophotonic inverse design. ACS Photon. 9, 664–671 (2022).

    Article  CAS  Google Scholar 

  16. Yang, Y. et al. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys. 14, 894–899 (2018).

    Article  CAS  Google Scholar 

  17. Yamaguti, S., Inoue, J.-i, Haeberlé, O. & Ohtaka, K. Photonic crystals versus diffraction gratings in Smith-Purcell radiation. Phys. Rev. B 66, 195202 (2002).

    Article  ADS  Google Scholar 

  18. Ochiai, T. & Ohtaka, K. Electron energy loss and Smith-Purcell radiation in two-and three-dimensional photonic crystals. Opt. Express 13, 7683–7698 (2005).

    Article  ADS  PubMed  Google Scholar 

  19. Bendana, X., Polman, A. & de Abajo, F. J. G. Single-photon generation by electron beams. Nano Lett. 11, 5099–5103 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Fernandes, D. E., Maslovski, S. I. & Silveirinha, M. G. Cherenkov emission in a nanowire material. Phys. Rev. B 85, 155107 (2012).

    Article  ADS  Google Scholar 

  21. Adamo, G. et al. Light well: a tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Pendry, J. & Martin-Moreno, L. Energy loss by charged particles in complex media. Phys. Rev. B 50, 5062 (1994).

    Article  ADS  CAS  Google Scholar 

  23. So, J.-K. et al. Cerenkov radiation in metallic metamaterials. Appl. Phys. Lett. 97, 151107 (2010).

    Article  ADS  Google Scholar 

  24. Kaminer, I. et al. Spectrally and spatially resolved Smith-Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).

    Google Scholar 

  25. Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).

    Article  ADS  Google Scholar 

  26. Kfir, O., Di Giulio, V., de Abajo, F. J. G. & Ropers, C. Optical coherence transfer mediated by free electrons. Sci. Adv. 7, eabf6380 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hayun, A. B. et al. Shaping quantum photonic states using free electrons. Sci. Adv. 7, eabe4270 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Dahan, R. et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 16, 1123–1131 (2020).

    Article  CAS  Google Scholar 

  29. Adiv, Y. et al. Quantum nature of dielectric laser accelerators. Phys. Rev. X 11, 041042 (2021).

    CAS  Google Scholar 

  30. Kremers, C., Chigrin, D. N. & Kroha, J. Theory of Cherenkov radiation in periodic dielectric media: emission spectrum. Phys. Rev. A 79, 013829 (2009).

    Article  ADS  Google Scholar 

  31. Chiu, C.-K. & Schnyder, A. P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors. Phys. Rev. B 90, 205136 (2014).

    Article  ADS  Google Scholar 

  32. Roques-Carmes, C. et al. A framework for scintillation in nanophotonics. Science 375, eabm9293 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Brenny, B., Coenen, T. & Polman, A. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J. Appl. Phys. 115, 244307 (2014).

    Article  ADS  Google Scholar 

  34. Wang, Z., Yao, K., Chen, M., Chen, H. & Liu, Y. Manipulating Smith-Purcell emission with Babinet metasurfaces. Phys. Rev. Lett. 117, 157401 (2016).

    Article  ADS  PubMed  Google Scholar 

  35. Jing, L. et al. Polarization shaping of free-electron radiation by gradient bianisotropic metasurfaces. Laser Photon. Rev. 15, 2000426 (2021).

    Article  ADS  Google Scholar 

  36. Tang, H. et al. Modeling the optical properties of twisted bilayer photonic crystals. Light Sci. Appl. 10, 157 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cerjan, A., Hsu, C. W. & Rechtsman, M. C. Bound states in the continuum through environmental design. Phys. Rev. Lett. 123, 023902 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Cerjan, A. et al. Observation of bound states in the continuum embedded in symmetry bandgaps. Sci. Adv. 7, eabk1117 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Guerrera, S. & Akinwande, A. I. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates. Nanotechnology 27, 295302 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Adiv, Y. et al. Observation of 2D Cherenkov radiation. Preprint at https://arXiv.org/abs/2203.01698 (2022).

  41. Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Varkentina, N. et al. Cathodoluminescence excitation spectroscopy: nanoscale imaging of excitation pathways. Preprint at https://arXiv.org/abs/2202.12520 (2022).

  43. Black, D. S. et al. Net acceleration and direct measurement of attosecond electron pulses in a silicon dielectric laser accelerator. Phys. Rev. Lett. 123, 264802 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Schönenberger, N. et al. Generation and characterization of attosecond microbunched electron pulse trains via dielectric laser acceleration. Phys. Rev. Lett. 123, 264803 (2019).

    Article  ADS  PubMed  Google Scholar 

  45. Niedermayer, U. et al. Low-energy-spread attosecond bunching and coherent electron acceleration in dielectric nanostructures. Phys. Rev. Appl. 15, L021002 (2021).

    Article  ADS  CAS  Google Scholar 

  46. Fallah, A., Kiasat, Y., Silveirinha, M. G. & Engheta, N. Nonreciprocal guided waves in the presence of swift electron beams. Phys. Rev. B 103, 214303 (2021).

    Article  ADS  CAS  Google Scholar 

  47. Peng, S. et al. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett. 122, 117401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Yu, Y. et al. Transition radiation in photonic topological crystals: quasiresonant excitation of robust edge states by a moving charge. Phys. Rev. Lett. 123, 057402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

    Article  ADS  PubMed  Google Scholar 

  50. Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

    Article  ADS  PubMed  Google Scholar 

  51. Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Kollár, A. J., Fitzpatrick, M., Sarnak, P. & Houck, A. A. Line-graph lattices: Euclidean and non-Euclidean flat bands, and implementations in circuit quantum electrodynamics. Commun. Math. Phys. 376, 1909–1956 (2019).

  54. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys. X 3, 1473052 (2018).

    Google Scholar 

  57. Leykam, D. & Flach, S. Perspective: photonic flatbands. APL Photonics 3, 070901 (2018).

    Article  ADS  Google Scholar 

  58. Tang, L. et al. Photonic flat-band lattices and unconventional light localization. Nanophotonics 9, 1161–1176 (2020).

    Article  Google Scholar 

  59. Li, J., White, T. P., O’Faolain, L., Gomez-Iglesias, A. & Krauss, T. F. Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16, 6227–6232 (2008).

    Article  ADS  PubMed  Google Scholar 

  60. Lou, B. et al. Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126, 136101 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Nguyen, D. X. et al. Magic configurations in moiré superlattice of bilayer photonic crystal: almost-perfect flatbands and unconventional localization. Preprint at https://arXiv.org/abs/2104.12774 (2021).

  63. Leykam, D., Flach, S. & Chong, Y. D. Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017).

    Article  ADS  Google Scholar 

  64. Pan, M., Zhao, H., Miao, P., Longhi, S. & Feng, L. Photonic zero mode in a non-Hermitian photonic lattice. Nat. Commun. 9, 1308 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Noda, S., Kitamura, K., Okino, T., Yasuda, D. & Tanaka, Y. Photonic-crystal surface-emitting lasers: review and introduction of modulated-photonic crystals. IEEE J. Sel. Top. Quantum Electron. 23, 1–7 (2017).

    Article  Google Scholar 

  66. Longhi, S. Photonic flat-band laser. Opt. Lett. 44, 287–290 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Xia, S. et al. Unconventional flatband line states in photonic Lieb lattices. Phys. Rev. Lett. 121, 263902 (2018).

    Article  ADS  PubMed  Google Scholar 

  68. Schächter, L. & Ron, A. Smith-Purcell free-electron laser. Phys. Rev. A 40, 876 (1989).

    Article  ADS  Google Scholar 

  69. Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Andrews, H. & Brau, C. Gain of a Smith-Purcell free-electron laser. Phys. Rev. Accel. Beams 7, 070701 (2004).

    Article  ADS  Google Scholar 

  71. Kumar, V. & Kim, K.-J. Analysis of Smith-Purcell free-electron lasers. Phys. Rev. E 73, 026501 (2006).

    Article  ADS  Google Scholar 

  72. Freund, H. & Abu-Elfadl, T. Linearized field theory of a Smith-Purcell traveling wave tube. IEEE Trans. Plasma Sci. 32, 1015–1027 (2004).

    Article  ADS  Google Scholar 

  73. Brinkmann, R., Derbenev, Y. & Flöttmann, K. A low emittance, flat-beam electron source for linear colliders. Phys. Rev. Accel. Beams 4, 053501 (2001).

    Article  ADS  Google Scholar 

  74. Piot, P., Sun, Y.-E. & Kim, K.-J. Photoinjector generation of a flat electron beam with transverse emittance ratio of 100. Phys. Rev. Accel. Beams 9, 031001 (2006).

    Article  ADS  Google Scholar 

  75. Nguyen, K. T. et al. Intense sheet electron beam transport in a uniform solenoidal magnetic field. IEEE Trans. Electron Devices 56, 744–752 (2009).

    Article  ADS  Google Scholar 

  76. Wang, Z. et al. High-power millimeter-wave BWO driven by sheet electron beam. IEEE Trans. Electron Devices 60, 471–477 (2012).

    Article  ADS  Google Scholar 

  77. Yang, Y. et al. Apparatus and methods for generating and enhancing Smith-Purcell radiation. US patent 10,505,334 (2019).

Download references

Acknowledgements

We thank T. Savas for fabricating the samples; A. Massuda and J. Sloan for contributions to the building of the setup; D. Zhu and M. Lončar for sharing equipment; and C. Mao, O. D. Miller and N. Rivera for stimulating conversations. This material is based on work supported in part by the US Army Research Office through the Institute for Soldier Nanotechnologies under contract number W911NF-18-2-0048, the Air Force Office of Scientific Research under the award numbers FA9550-20-1-0115 and FA9550-21-1-0299, the US Office of Naval Research Multidisciplinary University Research Initiative grant N00014-20-1-2325 on Robust Photonic Materials with High-Order Topological Protection, and the U.S.-Israel Binational Science Foundation grant 2018288. Y.Y. acknowledges the support from the start-up fund of the University of Hong Kong and the National Natural Science Foundation of China Excellent Young Scientists Fund (HKU 12222417). C.R.-C. acknowledges funding from the MathWorks Engineering Fellowship Fund by MathWorks Inc.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., C.R.-C., I.K. and M.S. conceived the project. Y.Y. designed the sample. C.R.-C. and S.E.K. performed the radiation measurements. H.T. and Y.Y. performed the Fourier scattering spectroscopy. J.B. designed and fabricated the objective motorized stage with inputs from C.R.-C. and S.E.K. Y.Y. and C.R.-C. analysed the data. Y.Y. and C.R.-C. wrote the manuscript with inputs from all authors. E.M., I.K., J.D.J. and M.S. supervised the project.

Corresponding authors

Correspondence to Yi Yang or Charles Roques-Carmes.

Ethics declarations

Competing interests

Y.Y., C.R.-C., S.E.K., I.K., J.D.J. and M.S. declare the following patent: US patent 10,505,334 (ref. 77).

Peer review

Peer review information

Nature thanks Fang Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–15, Figs. 1–15 and References. The sections are entitled Radiation experimental setup, Band structure measurements, Beam diameter and divergence, Collection optics, Experimental analysis, Physical mechanism of enhanced interaction, Numerical methods, Distinction between sheet electrons and point electrons, Point and line degeneracies between electron surface and photonic band, Angles of enhanced radiation, Flatband-induced localization, Numerical comparisons with diffractive gratings, Experimental comparisons with diffractive gratings, Generality of the flatband scheme, and Flatband resonances for strong coupling and accelerators.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Roques-Carmes, C., Kooi, S.E. et al. Photonic flatband resonances for free-electron radiation. Nature 613, 42–47 (2023). https://doi.org/10.1038/s41586-022-05387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05387-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing