Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inbreeding depression explains killer whale population dynamics

Abstract

Understanding the factors that cause endangered populations to either grow or decline is crucial for preserving biodiversity. Conservation efforts often address extrinsic threats, such as environmental degradation and overexploitation, that can limit the recovery of endangered populations. Genetic factors such as inbreeding depression can also affect population dynamics but these effects are rarely measured in the wild and thus often neglected in conservation efforts. Here we show that inbreeding depression strongly influences the population dynamics of an endangered killer whale population, despite genomic signatures of purging of deleterious alleles via natural selection. We find that the ‘Southern Residents’, which are currently endangered despite nearly 50 years of conservation efforts, exhibit strong inbreeding depression for survival. Our population models suggest that this inbreeding depression limits population growth and predict further decline if the population remains genetically isolated and typical environmental conditions continue. The Southern Residents also had more inferred homozygous deleterious alleles than three other, growing, populations, further suggesting that inbreeding depression affects population fitness. These results demonstrate that inbreeding depression can substantially limit the recovery of endangered populations. Conservation actions focused only on extrinsic threats may therefore fail to account for key intrinsic genetic factors that also limit population growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution, population structure, inbreeding and demographic history for five North Pacific killer whale populations.
Fig. 2: Effects of inbreeding on survival to age 40 yr and population growth.
Fig. 3: Genetic loads in North Pacific killer whales.

Similar content being viewed by others

Data availability

Raw sequence data and our killer whale genome assembly are freely available at the China National GeneBank DataBase (CNGBdb) with accession number CNP0002439. Demographic data for the Southern Resident killer whales are freely available at https://doi.org/10.5281/zenodo.7011243. Other freely available reference genomes used here include Indo-Pacific dolphin (https://www.ncbi.nlm.nih.gov/assembly/GCA_003227395.1), North Atlantic right whale (https://www.dnazoo.org/assemblies/Eubalaena_glacialis) and Pacific white-sided dolphin (https://www.dnazoo.org/assemblies/Lagenorhynchus_obliquidens).

Code availability

Computer code used in this study is available at https://doi.org/10.5281/zenodo.7504838.

References

  1. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).

    Article  Google Scholar 

  3. Hedrick, P. W., Lacy, R. C., Allendorf, F. W. & Soulé, M. E. Directions in conservation biology: comments on Caughley. Conserv. Biol. 10, 1312–1320 (1996).

    Article  Google Scholar 

  4. Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl Acad. Sci. USA 118, e2104642118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Grady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133, 42–51 (2006).

    Article  Google Scholar 

  6. Shaffer, M. L. Minimum population sizes for species conservation. BioScience 31, 131–134 (1981).

    Article  Google Scholar 

  7. Soulé, M. E. Viable Populations for Conservation (Cambridge Univ. Press, 1987).

  8. Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G. & Allendorf, F. W. Genomics advances the study of inbreeding depression in the wild. Evol. Appl. 9, 1205–1218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).

    Article  Google Scholar 

  11. Ralls, K., Brugger, K. & Ballou, J. Inbreeding and juvenile mortality in small populations of ungulates. Science 206, 1101–1103 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).

    Article  PubMed  Google Scholar 

  13. Robinson, Z. L. et al. Experimental test of genetic rescue in isolated populations of brook trout. Mol. Ecol. 26, 4418–4433 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Bozzuto, C., Biebach, I., Muff, S., Ives, A. R. & Keller, L. F. Inbreeding reduces long-term growth of Alpine ibex populations. Nat. Ecol. Evol. 3, 1359–1364 (2019).

    Article  PubMed  Google Scholar 

  15. Saccheri, I. et al. Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494 (1998).

    Article  CAS  Google Scholar 

  16. Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl Acad. Sci. USA 118, e2015096118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ford, J. K. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).

    Article  Google Scholar 

  18. Dahlheim, M. et al. Eastern temperate North Pacific offshore killer whales (Orcinus orca): occurrence, movements, and insights into feeding ecology. Mar. Mammal. Sci. 24, 719–729 (2008).

    Article  Google Scholar 

  19. Ford, J. K. et al. Shark predation and tooth wear in a population of northeastern Pacific killer whales. Aquat. Biol. 11, 213–224 (2011).

    Article  Google Scholar 

  20. Parsons, K. M. et al. Geographic patterns of genetic differentiation among killer whales in the northern North Pacific. J. Hered. 104, 737–754 (2013).

    Article  PubMed  Google Scholar 

  21. Olesiuk, P., Bigg, M. & Ellis, G. Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Comm. 12, 209–243 (1990).

    Google Scholar 

  22. COSEWIC Assessment and Update Status Report on the Killer Whale Orcinus orca, Southern Resident Population, Northern Resident Population, West Coast Transient Population, Offshore Population and Northwest Atlantic/Eastern Arctic Population, in Canada (Committee on the Status of Endangered Wildlife in Canada, 2008).

  23. Ward, E. J. et al. Estimating the Impacts of Chinook Salmon Abundance and Prey Removal by Ocean Fishing on Southern Resident Killer Whale Population Dynamics (NOAA, 2013).

  24. Recovery Plan for Southern Resident Killer Whales (Orcinus orca) (National Marine Fisheries Service, 2008).

  25. Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Kardos, M., Qvarnström, A. & Ellegren, H. Inferring individual inbreeding and demographic history from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics 205, 1319–1334 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thompson, E. A. Identity by descent: variation in meiosis, across genomes, and in populations. Genetics 194, 301–326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stoffel, M. A., Johnston, S. E., Pilkington, J. G. & Pemberton, J. M. Mutation load decreases with haplotype age in wild Soay sheep. Evol. Lett. 5, 187–195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Szpiech, Z. A. et al. Long runs of homozygosity are enriched for deleterious variation. Am. J. Hum. Genet. 93, 90–102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Foote, A. D. et al. Runs of homozygosity in killer whale genomes provide a global record of demographic histories. Mol. Ecol. 30, 6162–6177 (2021).

    Article  PubMed  Google Scholar 

  32. Barrett-Lennard, L. G. & Ellis, G. Population Structure and Genetic Variability in Northeastern Pacific Killer Whales: Towards an Assessment of Population Viability (Department of Fisheries and Oceans Canada, 2001).

  33. Ford, M. J. et al. Inbreeding in an endangered killer whale population. Anim. Conserv. 21, 423–432 (2018).

    Article  Google Scholar 

  34. Ford, M. J. et al. Inferred paternity and male reproductive success in a killer whale (Orcinus orca) population. J. Hered. 102, 537–553 (2011).

    Article  PubMed  Google Scholar 

  35. Santiago, E. et al. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol. Biol. Evol. 37, 3642–3653 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Do, C. et al. NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Waples, R. S. Genetic methods for estimating the effective size of cetacean populations. Rep. Int. Whal. Comm. 13, 279–300 (1991).

    Google Scholar 

  38. Robinson, J. A. et al. Genomic flatlining in the endangered island fox. Curr. Biol. 26, 1183–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Hedrick, P., Robinson, J., Peterson, R. O. & Vucetich, J. A. Genetics and extinction and the example of Isle Royale wolves. Anim. Conserv. 22, 302–309 (2019).

    Article  Google Scholar 

  40. Dussex, N. et al. Population genomics of the critically endangered kākāpō. Cell Genom. 1, 100002 (2021).

  41. Kardos, M. et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2, 124–131 (2018).

    Article  PubMed  Google Scholar 

  42. Robinson, J. A. et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci. Adv. 5, eaau0757 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hoelzel, A. R. et al. Evolution of population structure in a highly social top predator, the killer whale. Mol. Biol. Evol. 24, 1407–1415 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Morton, N. E., Crow, J. F. & Muller, H. J. An estimate of the mutational damage in man from data on consanguineous marriages. Proc. Natl Acad. Sci. USA 42, 855–863 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stoffel, M. A., Johnston, S. E., Pilkington, J. G. & Pemberton, J. M. Genetic architecture and lifetime dynamics of inbreeding depression in a wild mammal. Nat. Commun. 12, 2972 (2021).

  46. Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).

    Article  Google Scholar 

  47. Ralls, K., Ballou, J. D., Rideout, B. A. & Frankham, R. Genetic management of chondrodystrophy in California condors. Anim. Conserv. 3, 145–153 (2000).

    Article  Google Scholar 

  48. McCune, A. R. et al. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science 296, 2398–2401 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS ONE 12, e0179824 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).

    Article  PubMed  Google Scholar 

  51. Muto, M. et al. Alaska Marine Mammal Stock Assessments, 2016 (NOAA, 2017).

  52. Holt, M. M. et al. Vessels and their sounds reduce prey capture effort by endangered killer whales (Orcinus orca). Mar. Environ. Res. 170, 105429 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Ford, J. K., Ellis, G. M., Olesiuk, P. F. & Balcomb, K. C. Linking killer whale survival and prey abundance: food limitation in the oceans’ apex predator? Biol. Lett. 6, 139–142 (2010).

    Article  PubMed  Google Scholar 

  54. Krahn, M. M. et al. Persistent organic pollutants and stable isotopes in biopsy samples (2004/2006) from Southern Resident killer whales. Mar. Pollut. Bull. 54, 1903–1911 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

  56. Do, R. et al. No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nat. Genet. 47, 126–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khan, A. et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl Acad. Sci. USA 118, e2023018118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matkin, C. O., Ward Testa, J., Ellis, G. M. & Saulitis, E. L. Life history and population dynamics of southern Alaska resident killer whales (Orcinus orca). Mar. Mammal. Sci. 30, 460–479 (2014).

    Article  Google Scholar 

  59. Southern Resident Killer Whales (Orcinus orca) 5-Year Review: Summary and Evaluation (National Marine Fisheries Service, 2016).

  60. Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487–3494 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grossen, C., Guillaume, F., Keller, L. F. & Croll, D. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Commun. 11, 1001 (2020).

  63. Robinson, J. A. et al. The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science 376, 635–639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robinson, J., Kyriazis, C. C., Yuan, S. C. & Lohmueller, K. E. Deleterious variation in natural populations and implications for conservation genetics. Ann. Rev. Anim. Biosci. (in the press).

  65. García-Dorado, A. Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection. Genetics 190, 1461–1476 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kijas, J. W. et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10, e1001258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clutton-Brock, T. H. & Pemberton, J. M. Soay Sheep: Dynamics and Selection in an Island Population (Cambridge Univ. Press, 2004).

  68. Garcia-Dorado, A. & Hedrick, P. Some hope and many concerns on the future of the vaquita. Heredity https://doi.org/10.1038/s41437-022-00573-7 (2022).

  69. Huisman, J., Kruuk, L. E. B., Ellis, P. A. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl Acad. Sci. USA 113, 3585–3590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nelms, S. E. et al. Marine mammal conservation: over the horizon. Endanger. Species Res. 44, 291–325 (2021).

    Article  Google Scholar 

  71. Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Conserv. 221, 44–58 (2018).

    Article  Google Scholar 

  72. Ward, E. J., Holmes, E. E. & Balcomb, K. C. Quantifying the effects of prey abundance on killer whale reproduction. J. Appl. Ecol. 46, 632–640 (2009).

    Article  Google Scholar 

  73. Myers, H. J., Olsen, D. W., Matkin, C. O., Horstmann, L. A. & Konar, B. Passive acoustic monitoring of killer whales (Orcinus orca) reveals year-round distribution and residency patterns in the Gulf of Alaska. Sci. Rep. 11, 20284 (2021).

  74. Snyder, R. E. How demographic stochasticity can slow biological invasions. Ecology 84, 1333–1339 (2003).

    Article  Google Scholar 

  75. Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    Article  Google Scholar 

  76. Ward, E. et al. Long‐distance migration of prey synchronizes demographic rates of top predators across broad spatial scales. Ecosphere 7, e01276 (2016).

    Article  Google Scholar 

  77. Ford, J. K. B., Wright, B. M., Ellis, G. M. & Candy, J. R. Chinook Salmon Predation by Resident Killer Whales: Seasonal and Regional Selectivity, Stock Identity of Prey, and Consumption Rates (Canadian Science Advisory Secretariat, 2010).

  78. Chasco, B. E. et al. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon. Sci. Rep. 7, 15439 (2017).

  79. Beck, S. et al. Using opportunistic photo-identifications to detect a population decline of killer whales (Orcinus orca) in British and Irish waters. J. Mar. Biol. Assoc. 94, 1327–1333 (2014).

    Article  Google Scholar 

  80. Carretta, J. V. et al. US Pacific Marine Mammal Stock Assessments, 2021 (NOAA, 2022).

  81. Muto, M. et al. Alaska Marine Mammal Stock Assessments, 2019 (NOAA, 2020).

  82. Thomas, J. C., Khoury, R., Neeley, C. K., Akroush, A. M. & Davies, E. C. A fast CTAB method of human DNA isolation for polymerase chain reaction applications. Biochem. Educ. 25, 233–235 (1997).

    Article  CAS  Google Scholar 

  83. Bigg, M. A. Killer Whales: A Study of Their Identification, Genealogy, and Natural History in British Columbia and Washington State (Phantom, 1987).

  84. Southern Resident Killer Whale ID Guide (Center for Whale Research, 2022).

  85. Sambrook, J. & Russell, D. Molecular Cloning: A Laboratory Manual (Woodbury, 2000).

  86. Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120 (2017).

  87. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

  89. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47, 272–275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Guindon, S., Delsuc, F., Dufayard, J. -F. & Gascuel, O. in Bioinformatics for DNA Sequence Analysis (ed. Posada, D.) 113–137 (Humana Press, 2009).

  93. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pemberton, T. J. et al. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 91, 275–292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  98. Gabry, J. & Češnovar, R. Cmdstanr: R interface to ’CmdStan’ (2020).

  99. Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    Google Scholar 

  100. Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. Rank-normalization, folding, and localization: an improved R-hat for assessing convergence of MCMC. Bayesian Anal. 16, 667–718 (2021).

    Article  Google Scholar 

  102. Nietlisbach, P., Muff, S., Reid, J. M., Whitlock, M. C. & Keller, L. F. Nonequivalent lethal equivalents: models and inbreeding metrics for unbiased estimation of inbreeding load. Evol. Appl. 12, 266–279 (2019).

    Article  PubMed  Google Scholar 

  103. Crow, J. F & Kimura, M. An Introduction to Population Genetics Theory (Harper & Row, 1970).

  104. Kardos, M. & Luikart, G. The genetic architecture of fitness drives population viability during rapid environmental change. Am. Nat. 197, 511–525 (2021).

    Article  PubMed  Google Scholar 

  105. Kardos, M., Luikart, G. & Allendorf, F. W. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity 115, 63–72 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kardos, M., Allendorf, F. W. & Luikart, G. Evaluating the role of inbreeding depression in heterozygosity-fitness correlations: how useful are tests for identity disequilibrium? Mol. Ecol. Resour. 14, 519–530 (2014).

    Article  PubMed  Google Scholar 

  107. Robinson, Z. L. et al. Evaluating the outcomes of genetic rescue attempts. Conserv. Biol. 35, 666–677 (2021).

    Article  PubMed  Google Scholar 

  108. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Simmons, M. J. & Crow, J. F. Mutations affecting fitness in Drosophila populations. Annu. Rev. Genet. 11, 49–78 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Ballinger, M. A. & Noor, M. A. Are lethal alleles too abundant in humans? Trends Genet. 34, 87–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Lacy, R. C., Alaks, G. & Walsh, A. Hierarchical analysis of inbreeding depression in Peromyscus polionotus. Evolution 50, 2187–2200 (1996).

    Article  PubMed  Google Scholar 

  113. Deng, H.-W. & Lynch, M. Estimation of deleterious-mutation parameters in natural populations. Genetics 144, 349–360 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Levin, X. Zeng, Y. He and Y. Zhang for facilitating this project. This project would not have been possible without the long-term monitoring of the SRKW population provided by K. Balcomb and the Center for Whale Research, WA, USA. The China National GeneBank provided technical support with sequence data. The North Gulf Oceanic Society provided DNA from Alaska resident killer whales. Funding was provided by the National Natural Science Foundation of China (grant nos. 42225604 and 41422604), ‘One Belt and One Road’ Science and Technology Cooperation Special Program of the International Partnership Program of the Chinese Academy of Sciences (183446KYSB20200016) and Blue granary scientific and technological innovation of China (2018YFD0900301-05).

Author information

Authors and Affiliations

Authors

Contributions

M.J.F., K.M.P., G.F. and S.L. initiated the study. C.O.M., M.B.H., C.E. and S.L. planned and conducted fieldwork and provided samples. Y.Z., P.Z., H.K., X.X., X.L. and Y.A. assembled the genome and conducted population structure analyses. Y.Z., P.Z., H.K., X.X., X.L., Y.A. and M.K. conducted bioinformatics. M.K. conducted analyses of demographic history and inbreeding. M.K. and E.J.W. conducted inbreeding depression and demographic projection analyses. M.K., M.J.F., Y.Z., K.M.P. and Y.A. wrote the first draft of the paper and all authors commented and contributed to the final draft.

Corresponding authors

Correspondence to Marty Kardos, Michael J. Ford, Guangyi Fan or Songhai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Andrew Foote and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Neighbour joining (NJ) tree and admixture analysis of killer whale population structure.

One false killer whale sample was used as the outgroup to construct the NJ tree.

Extended Data Fig. 2 Historical Ne estimates (thick lines) and 95% confidence intervals (shaded regions) over the last 50 generations were estimated from patterns of linkage disequilibrium (LD) among linked SNPs with the program GONE (46).

The results for all 150 generations are shown in Fig. 1d in the main text. Here, we zoom in on the estimated effective sizes over the last 50 generations for Transient (green), Alaska Resident (dark blue), and Southern Resident (light blue) killer whales.

Extended Data Fig. 3 Annual survival estimates for an average 20-year-old, by sex, as a function of FROH values.

The thin blue lines represent 5,000 random MCMC draws of the estimated relationship between survival and FROH in our Bayesian model. The thick solid lines represent the posterior mean. The shaded areas represent the central 50% (dark) and 95% (light) of survival probability across the 5,000 MCMC draws. These results can be compared directly to Extended Datas Fig. 5 which shows an increase in estimated annual survival as HSNP increases.

Extended Data Fig. 4 Cumulative survival estimates to age 40, by sex, as a function of FROH.

The thin blue lines represent 5,000 random MCMC draws of the estimated relationship between cumulative survival and FROH in our Bayesian model. The thick solid lines represent the posterior mean. The shaded areas represent the central 50% (dark) and 95% (light) of survival probability across the 5,000 MCMC draws. These results can be compared directly to Extended Data Fig. 6 which shows an increase in estimated cumulative survival as HSNP increases.

Extended Data Fig. 5 Annual survival estimates by sex, as a function of HSNP.

The thin blue lines represent 5,000 random MCMC draws of the estimated relationship between cumulative survival and HSNP in our Bayesian model. The thick solid lines represent the posterior mean. The shaded areas represent the central 50% (dark) and 95% (light) of survival probability across the 5,000 MCMC draws. These results can be compared directly to Extended Data Fig. 3 which shows a decrease in estimated annual survival as FROH increases.

Extended Data Fig. 6 Cumulative survival estimates to age 40, by sex, as a function of HSNP.

The thin blue lines represent 5,000 random MCMC draws of the estimated relationship between cumulative survival and HSNP in our Bayesian model. The thick solid lines represent the posterior mean. The shaded areas represent the central 50% (dark) and 95% (light) of survival probability across the 5,000 MCMC draws. These results can be compared directly to Extended Data Fig. 4 which shows a decrease in estimated cumulative survival as FROH increases.

Extended Data Fig. 7 Relationship of age at death with FROH and sex. Relationship between FROH and age at death is shown for analyses using minimum ROH lengths of 1 Mb (A) and 10 Mb (B) for females (left) and males (right).

The relationship between FROH and age at death is shown for analyses using minimum ROH lengths of 1 Mb (top row) and 10 Mb (bottom row) for females (left) and males (right). Solid lines are fitted values from the statistical results shown in Supplementary Table 14. The model is of the form \({{{\mathrm{Age}}}} = B_0 + B_{F_{{{{\mathrm{ROH}}}}}} + {{{\mathrm{sex}}}}\), and the fitted lines shown in the plots have sex-specific intercepts according to the output (Supplementary Table 14). This analysis is based on the 28 SRKW individuals with sequence data that have died over the course of the study.

Extended Data Fig. 8 Lifetime reproductive success for SRKW females, calculated via the age-based models in our analysis plotted against FROH.killer whale population under models 1–15 (Supplementary Table 15).

FROH was measured using ROH with minimum lengths of 1 Mb and 10 Mb (different coloured lines as indicated in the legend).

Extended Data Fig. 9 Simulated future population trends with (red) and without (grey) inbreeding depression in the SRKW population under models 1–15 (Supplementary Table 15).

Each thin line represents one of 200 simulation replicates. Thick lines represent the median projected population size through time. The shaded areas represent the central 50% (dark) and 95% (light) of population size.

Extended Data Fig. 10 Site-frequency spectra based on analysis of 12 individual genomes from the Southern Resident (left), Alaska Resident (middle), and Transient killer whales (right).

The SFS for putatively deleterious and neutral derived alleles are shown as blue and orange lines, respectively. Derived allele frequencies of 0 and 1 are excluded.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–18 and Tables 1–16.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardos, M., Zhang, Y., Parsons, K.M. et al. Inbreeding depression explains killer whale population dynamics. Nat Ecol Evol 7, 675–686 (2023). https://doi.org/10.1038/s41559-023-01995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-01995-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing