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Abstract 

This paper presents an empirical analysis of the effects of temperature on Direct Current Fast Charger 

(DCFC) charging rate and discusses the impact of such effects on wider adoptions of electric vehicles 

(EVs). The authors conducted statistical analysis on the effects of temperature and constructed an electric 

vehicle charging model that can show the dynamics of DCFC charging process under different 

temperatures. The results indicate that DCFC charging rate can deteriorate considerably in cold 

temperatures. These findings may be used as a reference to identify and assess the regions that may suffer 

from slow charging. The problems associated with temperature effects on DCFC charging deserve greater 

attention as electrification of motor vehicles progresses and DCFC usage increases in the future. 
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1. Introduction 

Although the affordability of electric vehicles (EVs) has dramatically improved in the past few years, that 

affordability is nowhere near that of their gasoline counterparts. EVs at competitive prices with gasoline 

counterparts are available in the current market; however, they are typically equipped with small battery 

packs that can only support a very limited driving range per charge. Because high-capacity lithium-ion 

batteries come with a high price tag, fast public charging has often been considered as an alternative 

solution to extending the limited driving range of EVs (Schroeder and Traber 2012, Morrissey et al. 2016, 

Bernardo et al. 2016, Burnham et al. 2017, Levinson and West, 2017, Neaimeh 2017, Bryden et al., 

2018). However, fast charging a lithium-ion battery is a complicated process with many shortcomings. 

One of the most notable limits of charging lithium-ion batteries is the variable charging rate that is 

susceptible to different environmental conditions—which occurs as the onboard battery management 

system limits the charging rate to avoid detrimental effects on the battery cells (Motoaki and Shirk 2017). 

Cold temperature in particular can considerably degrade the charging rate and extend the duration of 

charging, which potentially pose challenges in EV operation in cold regions. Therefore, in a large country 

like the United States where regional climate can vary from coast to coast, fast charger deployment for 

EVs requires careful consideration regarding the effects of regional temperature on fast battery charging. 

However, the literature on EV infrastructure planning and policy in the light of the temperature effects on 

EV fast charging are limited. Past studies typically assumed the EV charging process with a constant rate 

of charge (Zhang et al. 2012, Dong et al. 2014, Zenginis 2016, Wang et al. 2017) and the effects of 

temperature on EV charging were neither accounted for or discussed. However, because cold 

temperatures have substantial effects on the performance of lithium-ion batteries (Dubarry et al. 2013, 

INL, Ji et al. 2013, Jaguemont et al. 2016, Lindgren and Lund 2016), the findings from previous studies 

on EV infrastructure may alter once the temperature effects are taken into account. However, data 

acquisition as well as methodologies to estimate the impacts of temperature on EV fast charging are 

challenging. Ideally, statistical modeling should be applied to data that are collected from repeated 
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experiments in a controlled laboratory environment; however, data collection of such kind is costly in 

time and budget. 

Alternatively, in this paper we propose that fast charging data collected from on-road vehicles can 

supplement such needs. More specifically, we use on-road data collected from Nissan Leafs that were 

operated as taxi cabs in New York City for a case study to statistically analyze the magnitude of effects of 

temperature on EV fast charging. Based on the resulting model, the potential impact of such an effect on 

wider adoptions of electric vehicles is subsequently discussed. The novelties of this paper are three folds: 

(1) the application of statistical methods to field data for modeling the electric vehicle charging process; 

(2) the creation of a charging process model (based on the 2012 Nissan Leaf) that captures the effects of 

temperature; and (3) the illustration of the effect of temperature on charging efficiency across various 

regions in the United States. The resultant methodology to construct a charging process model is well 

suited to be used in the context of the analysis and optimization of electric vehicle infrastructure. To the 

best knowledge of the authors, no study has examined the effects of temperature on EV fast charging 

based on empirical data. 

2. Literature Review 

It is uncertain how commonly the complexity and shortcomings of the fast charging process are known 

outside the battery research field. EV manufacturers typically only provide rough approximations of 

charging duration to the public, without specifying the range of conditions in which that said performance 

is accurate. For example, the 2012 Nissan Leaf owner’s manual states that Direct Current Fast Chargers 

(DCFCs) are capable of recharging a 2012 Leaf battery from a 10% state of charge (SOC) to an 80% SOC 

in about 30 minutes (Nissan 2012), but it does not state how much time is required to charge from 80% to 

100% or how much delay is expected under what conditions. However, the fact is that the rate of charge 

is variable as it is controlled by the vehicle’s onboard battery management system to avoid overcharging 

and damage to the battery, which can be triggered by a variety of internal and external factors. Among 
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others, cold temperatures have been shown to have particularly high detrimental effects on lithium-ion 

batteries. A review of the findings on the effects of cold temperatures on Li-ion battery technology can be 

found in Jaguemont et al. (2016). 

Many EV research areas require a numerical representation of the DCFC charging process. For example, 

charging station deployment often needs to consider the rate of EV charging because a longer duration of 

charge means a need for more charging stations for a given demand. However, the problematic effects of 

temperature on the fast charging and their effects on the level of services of the fast charging have rarely 

been considered. In fact, the rate of charge is typically assumed constant (Zhang et al. 2012, Dong et al. 

2014, Zenginis 2016, Wang et al. 2017). Although this practice provides computational convenience in 

modeling EV charging, it also introduces positive biases in the performance of EV charging because it 

does not account for the variable charging rate. Previous research attempted to incorporate the variable 

charging rate in modeling. For example, Arias and Bae (2016) adopted a piecewise linear simplification 

of the charging rate which was originated from Zhang et al. (2012)—it takes 30 minutes to charge from 0 

to 80% capacity and an additional 15 minutes from 80 to 100%. Arias et al. (2017) also adopted a two-

piece charging profile linearization with an assumed duration of 36 minutes required for full charge. 

Olivella-Rosell et al. (2015) modeled the charging process as a nonlinear function of SOC and energy 

required, although the type of charging station considered was 230-volt alternating current charging 

instead of DCFC. Lindgren and Lund (2016), on the other hand, applied a battery model to simulate 

charging and discharging of an EV battery in a simulation study of an EV fleet. Although their use of an 

accurate battery model, in theory, would guarantee an accurate characterization of EV fast charging, this 

approach has several shortcomings. Firstly, their battery model was based on a single cell and not a 

battery pack; thus, to emulate the behavior of the battery pack, the model input and output were 

multiplied by an assumed number of cells in the pack. This scaling practice would also proportionally 

scale up the degree of bias and error that the single-cell model contains. Moreover, their battery model 

originated from unpublished work and the validity of the model is uncertain. The study also placed its 
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focus on level 2 charging (3.6 kW) instead of DCFC, whose process is more difficult to characterize. The 

charging processes in the above-mentioned studies were based on laboratory observations, and the effects 

of temperature on fast charging were not examined. Few empirical studies of the temperature effects on 

EVs can be found in EV literature. Yuksel and Michalek (2015) examined the effects of regional climate 

variation on EVs in terms of energy consumption, driving and charging patterns, and grid emissions. The 

authors quantified the temperature effects on driving range, energy consumption per mile, and carbon 

dioxide emissions per mile based on on-road data. Although the authors acknowledged that temperature 

also affects the charging duration, it was not examined. 

To the best of the authors’ knowledge, the effects of temperature on EV fast charging rate have never 

been estimated using field data. One obvious reason for the lack of empirical modeling of the effects of 

temperature on fast charging is the unavailability of the particular type of field data that are needed for the 

analysis. In order to conduct an empirical study on the effects of temperature on EV fast charging, the 

field data needs to contain detailed records of variables such as timing, duration, state of charge, 

temperature, and amount of charge. However, not only are on-road vehicle data rarely collected, but EV 

charging also has very much to do with environmental conditions and human behavior that are extremely 

difficult to record or control, which makes many types of analysis simply infeasible. The literature on the 

use of on-road vehicle data is quite limited. For example, Sun et al. (2015) and Zoepf et al. (2013) both 

used on-road vehicle data to estimate discrete choice models for the timing of EV charging. Motoaki and 

Shirk (2017) examined the on-road data collected as part of the EV Project— a large scale project funded 

by the United States Department of Energy—to investigate the effect of a fixed fee on fast charger 

utilization. In their study, it was found that DCFCs can be used inefficiently by a driver if the vehicle in 

question is kept plugged in even after the rate of charge deteriorates considerably. In the data used in the 

study, each charging event was recorded in terms of time the vehicle was parked at a DCFC charge 

station (i.e., park duration was not necessarily all spent charging), and the actual duration of time spent 

solely for the purpose of charging was not known. Therefore, long park duration observed at those 
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stations with nearby amenities could be attributed to the possibility that the driver left his/her car plugged 

in at the station and went shopping or dining without having to make the trade-off between the time spent 

at the charging station and the amount of charge. This made it impossible for the authors to tell if the 

driver intentionally kept the vehicle plugged in at a DCFC even after the rate of charge deteriorated for 

further charging or he/she simply did not care to come back to the vehicle in time. Moreover, because 

each charging event record consists of park duration and the amount of charge, the variable nature of the 

charging rate could not be examined. Temperature at the time of charging was not recorded in the EV 

Project data; thus, the effect of temperature on DCFC charging was also not examined. The findings from 

Motoaki and Shirk (2017) show that in an effort to measure the empirical performance of DCFC, some 

level of experimental control must be placed on both the availability of the charger (i.e., a charger must be 

available for use when needed) and the behavior of the driver (i.e., timing of charging must be close to 

optimal) to reduce its effects on the patterns of charging.   

3. Data 

In an effort to mitigate the problems associated with typical on-road vehicle data discussed above, this 

present study utilizes on-road data collected from a number of 2012 Nissan Leafs used as taxis as a part of 

the New York City Taxi and Limousine Commission’s Electric Vehicle Pilot Program. During the pilot 

program several Leafs were provided by Nissan to taxi fleets and owner drivers for use in normal taxi 

service. Two 50-kW DCFCs were available for use by the Leaf taxis in Manhattan, New York. During the 

test period, which ran from June 2013 through February 2015, controller area network data were collected 

by on-board data loggers during vehicle operation and charging. Collected controller area network signals 

include battery current, battery voltage, SOC, vehicle speed, ambient temperature, charge duration, and 

vehicle global positioning system location. When the vehicle was plugged in to a charger, it was recorded 

as a single event for which the battery SOC was recorded both at the time the charging was initiated and 

the time it was ended—the intermediate process of charging was not included in the data.  
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Our reasons for the choice of this particular dataset for our study are twofold. Firstly, in taxi operation, 

the problems of inefficient use of DCFC, described in Motoaki and Shirk (2017), are mitigated because 

for each in-shift charging, the driver needs to make the tradeoff between the time spent at the charger and 

its opportunity cost (i.e., revenue he or she can potentially earn for that time). Therefore, it was in the 

driver’s best interest to minimize the time spent at a charging station and return to his or her shift as 

quickly as possible. Because of this, it can be reasonably assumed that the duration of the charge was used 

solely for the purpose of the charging. Moreover, because the trip to a charging station is a wasteful trip 

that does not generate revenue, the driver would also attempt to minimize the number of trips to a charger 

by charging the vehicle to around 80% for each charging event. These hypothesized charging patterns 

were confirmed by the data shown in Figure 1, which shows histograms of the SOC at the beginning of 

charge and the SOC after charge—about 50% of the time, drivers began charging their vehicles when the 

SOC was below 20% and the battery was charged to about 80% and above more than 90% of the time. 

Based on this evidence, the utilization of DCFC observed during the pilot program can be said to be near 

optimally efficient.  

Figure 1. Histograms of SOC before and after charge 

The effect of temperature on the charging rate was also confirmed from the data. Figure 2 shows the plot 

of the SOC increase and the end SOC against the duration of charging. The color of each observation 

reflects the ambient temperature at the time of the charging. The figure shows a clear relationship 

between temperature and charging duration: when temperature is above 25 °C, the relation between SOC 

increase and the duration seems strongly linear with a steep slope; whereas when temperature is below 25 

°C, the relation seems weakly linear with a much flatter slope. Figure 1 also shows that in cold weather, 

many of the charging events ended up taking much longer than the expected duration of 30 minutes. The 

strong vertical variation in the figure can be attributed to the variation in the initial SOC (SOC at the 

beginning of charging) as the charging rate becomes low when charging was started at a high SOC. The 

data contain only the charge events up to the maximum duration of 60 minutes because the charging 
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stations installed in this study had a safety feature of automatically shutting off the charging after 60 

minutes of a continuous use, in which case the driver had a choice of driving off and resuming his shift or 

start the second round of charging by resetting the charger, which would be recorded as a separate 

charging event. Although the reasons are unknown, the data indicated that in some instances the vehicle 

was unplugged during charging and plugged back immediately after. Because a series of such events were 

recorded as two or more separate charging events—even although they were likely really one event—the 

charging events that took place within a 5-minute window at the same charger were deemed as errors and 

removed from our analysis. Similarly, the charging events with duration of less than 3 minutes were 

deemed as errors and removed from the analysis. 

Figure 2. Relationships of SOC, charge duration, and temperature 

It is important to acknowledge that only the average charging rate can be computed for each charging 

event from the data—by dividing the SOC increase by the duration of the charging—because the data on 

the charging are limited to the initial SOC and the ending SOC without records of intermediate levels of 

the SOC. Figure 3 shows two scatter plots of the average rate of charge each plotted against the 

temperature and the initial SOC. Both plots show approximately linear relationships. 

Figure 3. Scatter plots of SOC increase per minute versus temperature and initial SOC respectively 

Ambient temperature data for the United States, which will be used to illustrate regional variation in EV 

fast charging rate, were obtained from the Typical Meteorological Year database from the National 

Renewable Energy Laboratory. The data consist of hourly temperatures of a typical meteorological year 

based on records for the year 1976 through 2005 in 925 locations of the lower 48 states. 

4. Methodology 
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As discussed earlier, because the average rate of charge in the recorded charging events has an 

approximately linear relationship with the temperature and the initial SOC, an ordinary least square 

regression with the following specification was estimated:  

                                                             Model 1 

With this specification, the Model 1 estimates the average rate of charge as a linear function of 

temperature and the initial SOC and fails to account for the continuous deterioration of the rate of charge 

over the duration of charge. The actual fast charging process is a non-linear process (Motoaki and Shirk 

2017) and a simple multiplication of the average rate of charge by duration can overestimate the amount 

of charge, especially for a charging event of long duration. Therefore, the current model by itself cannot 

accurately estimate the continuum of the variable charging rates or the resulting SOC. To fill this gap, the 

predicted values of SOC from our regression were computed in the following piecewise linear 

approximation for each discretized minute.  

Piecewise Linear Approximation 

The set of notations used in the derivation are listed in Table 1. 

Table 1. Set of notations 

The specification of Model 1 can be written as: 

                                             

Here   is assumed to be constant for a single charging event, because the ambient temperature is unlikely 

to vary significantly within the charging duration. This also matches the condition in which the 

experimental data were collected. Let             denote the coefficient estimates and     denote the 

predicted value of SOC after charging. Then, for some given values of           , we have: 
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Now consider an arbitrary charging event over the duration of      , and discretize this time range into   

intervals of equal length                      . Let      denote SOC as a function of time. 

Then, the function      can be approximated by a piecewise linear function       over each interval as: 

                                                 

for                                       

Model 2 

Model 2 can be used to approximately predict SOC as a function of time with different initial SOC values 

and under different temperatures. It is important to note that from Model 2, a smooth (i.e., continuously 

differentiable) function can be derived by taking the limit as    . 

Re-arranging Model 2 and plugging in                                  gives: 

             

 
                       

Because       
             

 
 

      

  
 and                    , if       is continuously differentiable, 

taking the limit of both sides as     gives: 

      

  
                      

Solving the equation for       with the initial value          gives: 

 
          

         

   
   

 
    

         

   
   

Model 3 

Model 3 is a smooth approximation function that also predicts SOC over time with different initial SOC 

values and under different temperatures. It is important to note the applicable of the ambient temperature 

  and initial SOC   . On one hand,                
         

   
 implies the theoretical bounds    

  
         

   
  ; on the other hand, what’s more relevant to using Model 3 for predicting charging profiles 

are the practical bounds that are subject to the support of the data, which will be discussed in Section 6. 
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5. Result 

The regression model had an excellent fit to the data with both R
2
 and the adjusted R

2
 at 85%. Table 1 

shows the coefficient estimates and their 95% confidence intervals. All coefficients were statistically 

significant at the 1% level. The residuals versus the fitted plot and Q-Q plot of Model 1 showed very 

weak evidence for misspecification and some violation of residual normality at the tails. For a visual 

illustration purpose, the predicted values were computed using Model 3 and plotted to show SOC over a 

60-minute charge duration for 25°C and 0°C (Figure 4). The ambient temperature was assumed to be 

constant during the charge event. Our model predicts that with 95% confidence, the expected amount of 

the decrease in the end SOC after a 30-minute charge between when the temperature is 25°C and when it 

is 0°C is between 22 % and 36%. 

Table 2. Coefficients estimate of Model 1 

Figure 4. Plot of predicted SOC profile over time using the smooth approximation function 

6. Discussion 

This analysis showed that the average deterioration of a 30-minute DCFC charge from warm temperature 

(25°C) to cold temperature (0°C) can be as large as a 36% decrease in the end SOC. This indicates that 

the performance of DCFC can largely vary across the United States due to the variation in regional 

climate. To illustrate this problem, the SOC values rendered for the locations included in the Typical 

Meteorological Year database were calculated using Model 4. The coefficients             are given in 

Table 1,        and    is the median of the daily maximum hourly temperatures over a year at 

location   (i.e.,    is the median of     
       

                                ). These values of    

are chosen to illustrate possible limitations on the prevailing 50-kw DCFC due to impeded charging in 

cold weather. Charging efficiency is expected to be better than the rendered values in Figure 5 on half of 

the days in a year and worse on the other half. The median-temperature day SOC after a 30-minute 

charge, with an initial SOC of 20%, ranges from 49 to 74% over all different regions of the lower 48 
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states. In general, charging efficiency decreases as one goes further north and increases as one goes 

further south. As shown in Figure 5, noticeable pockets of areas with the poorest EV charging efficiencies 

are found in the Pacific Northwest, the Midwest, north of the Great Lakes region, and the upper Northeast, 

while the highest EV charging efficiencies are found near the southern state boundaries of California, 

Arizona, Texas, and Florida. 

Figure 5. Predicted SOC after 30-minute charge on median temperature day (S0 = 20%). 

The degradation of the rate of DCFC charge due to cold temperatures can potentially pose many 

challenges. For example, delays in fast charging may cause difficulties in maintaining EV operations that 

need to follow specific schedules. A slower DCFC charging rate can also be a deterrent for consumers 

living in cold regions to purchase EVs, in addition to other temperature-related issues such as 

performance loss and degradation of the batteries (Jaguemont et al., 2016) and driving-range loss from 

cabin climate control load (Yuksel et. al, 2015, Zhang et. al 2018). 

Future EVs likely have larger battery capacities and require less frequent fast public charging; however, 

public fast charging will still likely be required for a long-range drive and heavy-duty vehicles, which 

consume a large amount of energy per mile. Future charging stations will likely be able to charge EVs 

faster and may mitigate temperature effects; however, the level of potential improvement is unknown—at 

least in the short run. The present analysis also suggests that the impacts of EV fast charging on the 

electric grid may considerably vary over seasons in the future once the electricity demand from DCFCs 

constitutes a significant portion of the total electricity demand. Because the rate of charge can potentially 

be much higher in warm conditions, DCFC usage may require higher levels of electricity supply in 

warmer weather, thus impacting the grid more severely. In some regions of the United States, 

temperatures can fluctuate drastically from day to day or even hour to hour. An extreme level of short-

term fluctuation in temperature may make it difficult for an electricity supplier to plan for a sustainable 

energy supply, especially when the area hosts a large number of DCFCs. Past studies in modeling load 

demand due to EV battery charging did not account for seasonal variation in load demand due to variable 
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DCFC charging rate (Qian et al. 2011, Zhang et al. 2012, Liu 2012, Arias and Bae 2016). To the authors’ 

knowledge, the efficiency loss in EV system performance due to prolonged charging duration in cold 

temperature or its effects on the electric grid has not been examined.  Further research will be needed to 

address these issues and new policy should consider a variable load demand from EV charging caused by 

temperature changes.   

It is important to highlight that the present study has limitations needing to be addressed. First, the 

charging data were collected from one particular model of EV (i.e., the 2012 Nissan Leaf); as such this is 

just a case study with the Nissan Leaf. Other models of EVs have different battery management systems, 

energy consumption, and battery capacities; thus, the magnitude of temperature effects on their charging 

rate, as well as the charging rate and the expected charging duration, likely differs from that reported here. 

Second, because the field data were collected over a period of two years, it is reasonable to expect the 

vehicles’ battery capacity was degraded by several percentage points, especially toward the end of the 

data collection period. Because the unit of measure used for charging was based on SOC, battery 

degradation was not accounted for in this analysis. In addition, some measurement errors in SOC are 

likely present in the on-road data due to the limited accuracy of the battery management system to 

estimate SOC. In fact, when charging duration was less than five minutes, some of the recorded SOC and 

kWh charged were inconsistent with each other. We treated those observations as errors and removed 

them from the data.  

The support of our data also has limitations. Our data consist of fast charging with duration of between 

1 and 60 minutes. As shown in Figure 1, many charging events under severe cold temperatures took 60 

minutes. Charging events with duration of more than 60 minutes were not recorded in the data because 

the DCFC installed in the Electric Vehicle Pilot Program shut off after 60 minutes of use. We did not 

consider SOC after the charge beyond 60 minutes because we believed that charging that takes more than 

60 minutes with Nissan Leaf battery is not practically fast charging. The support for the temperature data 

during charging is also limited to the range of temperatures recorded in Manhattan between 2013 and 
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2015, where the lowest temperature recorded was -9.42°C and the highest was 39.34°C. Therefore, the 

approximation function, Model 3, should not be used to estimate changing profile for events under 

conditions that are beyond these the support of the data, which should be limited to durations between 1 

to 60 minutes and temperatures between -9.34 and 39.34 degrees Celsius. Finally, due to the availability 

of data, ambient temperature was used as a proxy for battery temperature which is what actually affects 

the charging rate.  

7. Conclusion  

The Nissan Leaf taxi data showed that the operation of the EV taxies suffered from considerable 

deterioration in the charging efficiency in cold temperatures. By applying a piecewise linear 

approximation with a regression, this study statistically estimated the effects of temperature on the 

average fast charging rate and constructed a charging model that can show the dynamics of the DCFC 

charging process under different temperatures. These results identified both the particular type of data 

needed to examine the performance of DCFC charging and an accompanying methodology to analyze 

such data. Using the charging model, we showed that the DCFC charging in some of the regions in the 

United States suffer from considerable deterioration in the charging efficiency in cold seasons. Our 

analysis may be used as a reference to identify and assess the regions that may suffer from severe 

charging inefficiency.   

The problems associated with temperature effects on DCFC charging deserve great attention as 

electrification of motor vehicles progresses and DCFC usage increases in the future. Because the 

temperature effects were neglected in the past research on EV infrastructure planning, these results may 

alter the previous findings. In particular, these findings pose additional uncertainty in the practicality of 

EV (with the current battery technology) in some of the regions in the United States in the light of their 

climatic characteristics. Future research in the fast charger location planning as well as EV operations that 

involve fast chargers, must consider climate variability.  
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Table 1. Notations and units used  

S – state of charge in fraction 

T – temperature (Celsius) 

t – time  (minute) 

S0 – initial SOC in fraction 

Se – ending SOC in fraction 

t0 – starting point in time of charging  

te – ending point in time of charging  

 

Table1



Table 2  

 

Estimate Standard Error t stats P value 

CI 

2.5% 

CI 

97.5% 

Intercept (β0) 0.015 0.00023 69.00 <0.01 0.015 0.016 

Temperature (β1) 0.00034 0.0000084 40.54 <0.01 0.00032 0.00036 

Initial SOC (β2) -0.022 0.00072 -30.33 <0.01 -0.023 -0.020 
R-squared: 0.85 

Adjusted R-squared: 0.85 

Degrees of Freedom: 420 
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