

EOS StainlessSteel 254 Material Data Sheet

EOS StainlessSteel 254

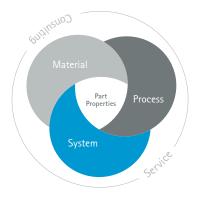
EOS StainlessSteel 254 is an austenitic stainless steel for extreme conditions. The high chromium, molybdenum and nitrogen alloying give excellent corrosion resistance in many difficult environments. The general pitting resistance equivalent PREN for 254 is 43 (PREN = %Cr + 3.3 X %Mo + 16 X %N).

Main Characteristics:

- Excellent resistance to uniform, pitting and crevice corrosion
- High resistance to stress corrosion cracking
- Higher strength than conventional austenitic stainless steels

Typical Applications:

- Chlorinated seawater handling equipment
- Pulp and paper manufacturing devices
- --> Chemical handling equipment


The EOS Quality Triangle

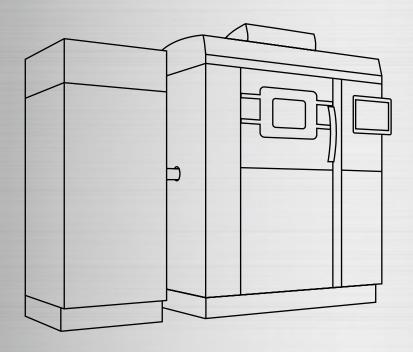
EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process. The data resulting from each combination is assigned a Technology Readiness Level (TRL) which makes the expected performance and production capability of the solution transparent.

EOS incorporates these TRLs into the following two categories:

- Premium products (TRL 7-9): offer highly validated data, proven capability and reproducible part properties.
- Core products (TRL 3 and 5): enable early customer access to newest technology still under development and are therefore less mature with less data.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties


EOS StainlessSteel 254 powder material is in accordance with DIN EN 10088-3, EN 1.4547

Powder chemical composition (wt.-%)

Element	Min.	Max.
Cr	19.5	20.5
Ni	17.5	18.5
Мо	6.0	7.0
Cu	0.5	1.0
N	0.18	0.25

Powder particle size	
Generic particle size	20-65 μm

EOS StainlessSteel 254 for EOS M 290 | 40 μm

Process Information
Physical Part Properties
Heat Treatment
Additional Data

EOS StainlessSteel 254 for EOS M 290 | 40 μm

Process Information

Layer thickness

Volume rate

System set-up	EOS M 290		
EOSPAR name	254_040_CoreM291_100		
Software requirements	EOSPRINT 2.8 or newer EOSYSTEM 5.20 or newer		
Powder part no.	9030-0007		
Recoater blade	HSS		
Nozzle	EOS grid nozzle		
Inert gas	Argon		
Sieve	75 μm		
Additional information			
Additional information			

40 μm

4.1 mm³/s

Chemical and Physical Properties of Parts

Micrograph etched as manufactured Etchant: ASTM E407-07, etchant 12

Defects	Result		
Porosity	0.01 %		
Density, ISO3369	≥ 8.07 g/cm ³		

Typical mechanical properties

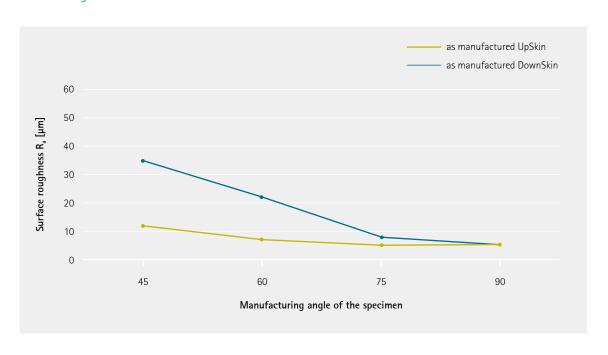
	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]
Heat treated horizontal	360	700	43
Heat treated vertical	360	660	48
As manufactured horizontal	680	810	29
As manufactured vertical	600	720	35

Tensile testing as per ISO 6892-1

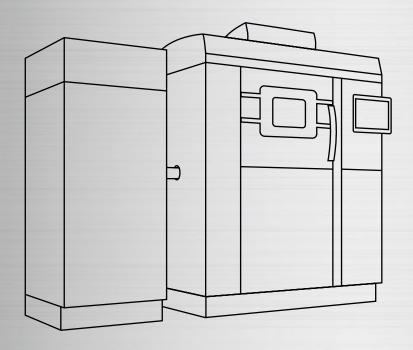
Heat Treatment

Optional solution annealing

At 1 180 °C for 2 h after parts have fully heated through, water quenching


Typical dimensional change after heat treatment: 0.06 %

Additional Data


Coefficient of Thermal Expansion ASTM E228

Temperature	25 – 100 °C	25 – 200 °C	25-300 °C	25-400 °C
СТЕ	14.8*10 ⁻⁶ /K	15.7*10 ⁻⁶ /K	16.3*10 ⁻⁶ /K	16.7*10 ⁻⁶ /K

Surface Roughness

EOS StainlessSteel 254 for EOS M 290 | 60 μm

Process Information
Physical Part Properties
Heat Treatment
Additional Data

EOS StainlessSteel 254 for EOS M 290 | 60 μm

Process Information

System set-up	EOS M 290		
EOSPAR name	254_060_CoreM291_100		
Software requirements	EOSPRINT 2.8 or newer EOSYSTEM 5.20 or newer		
Powder part no.	9030-0007		
Recoater blade	HSS		
Nozzle	EOS grid nozzle		
Inert gas	Argon		
Sieve	75 μm		
Additional information			
Layer thickness	60 μm		
Volume rate	6.1 mm³/s		

Chemical and Physical Properties of Parts

Micrograph etched as manufactured Etchant: ASTM E407-07, etchant 12

Defects	Result
Porosity	0.02 %
Density, ISO3369	≥ 8.07 g/cm ³

Typical mechanical properties

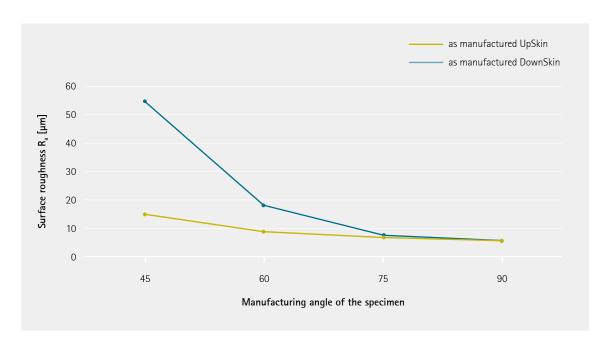
	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]
Heat treated horizontal	360	700	44
Heat treated vertical	360	660	48
As manufactured horizontal	660	800	30
As manufactured vertical	580	730	36

Tensile testing as per ISO 6892-1

Heat Treatment

Optional solution annealing

At 1 180 °C for 2 h after parts have fully heated through, water quenching


Typical dimensional change after heat treatment: 0.06 %

Additional Data

Coefficient of Thermal Expansion ASTM E228

Temperature	25 - 100 °C	25 – 200 °C	25-300 °C	25-400 °C
СТЕ	14.8*10 ⁻⁶ /K	15.7*10 ⁻⁶ /K	16.3*10 ⁻⁶ /K	16.7*10 ⁻⁶ /K

Surface Roughness

Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

www.eos.info

in EOS

y EOSGmbH

© EOS.global

■ EOSGmbH

#ShapingFuture

Further Offices

EOS France

Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India

Phone +91 443 964 8000

EOS Italy

Phone +39 023 340 1659

EOS Japan

Phone +81 45 670 0250

EOS Korea

Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK

Phone +44 1926 675 110

Status 02/2021

EOS is certified according to ISO 9001. EOS® and EOSPRINT® are registered trademarks of EOS GmbH in some countries. For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application.

The quoted values refer to the use of this material with above specified type of EOS DMLS system, EOSYSTEM and EOSPRINT software version, parameter set and operation in compliance with parameter sheet and operating instructions. Part properties are measured with specified measurement methods using defined test geometries and procedures. Further details of the test procedures used by EOS are available on request. Any deviation from these standard settings may affect the measured properties. The data correspond to EOS knowledge and experience at the time of publication and they are subject to change without notice as part of EOS' continuous development and improvement processes. EOS does not warrant any properties or fitness for a specific purpose, unless explicitly agreed upon. This also applies regarding any rights of protection as well as laws and regulations.

