Learning sparse symbolic policies for sepsis treatment
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Abstract

Sepsis is a life-threatening organ dysfunction
caused by a dysregulated host response to infec-
tion. Despite its severity, no FDA-approved drug
treatments exists. Recent work controlling sep-
sis simulations with deep reinforcement learning
have successfully discovered effective cytokine
mediation strategies. However, the performance
of these neural-network based policies comes at
the expense of their deployability in clinical set-
tings, where sparsity and interpretability are re-
quired characteristics. To this end, we propose a
pipeline to learn simple, sparse symbolic policies
represented by constants and/or succinct, human-
readable expressions. We demonstrate our ap-
proach by learning a sparse symbolic policy that
is efficacious on simulated sepsis patients.

1. Introduction

Sepsis is a life threatening condition wherein the immune
response to infection or injury becomes dysregulated and
paradoxically leads to tissue damage and organ failure. The
condition has a mortality rate between 28 and 50 percent and
approximately 1 million people are diagnosed with sepsis
each year (Singer et al., 2016). Therefore, even small reduc-
tions in the mortality rate of the disease will potentially save
hundreds to thousands of lives. Effectively treating sepsis
is still an elusive goal and there is no FDA approved drug
treatment (Wood & Angus, 2004). The current management
of sepsis is based on controlling the infection with antibi-
otics and providing physiological support of failing organs
until the patient’s immune system sufficiently readjusts and
recovers from its disordered state.

The inability to translate basic knowledge of the mecha-
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nisms that drive sepsis is due in large part to the complexity
of the interactions in the face of a paucity of clinical data.
Therefore, we contend that the future effective control of sep-
sis will require an enhanced ability to identify finer-grained
differences between patient disease trajectories, that, by ne-
cessity, must be generated in silico; additionally, we contend
that the ability to manage the combinatorial challenge is as-
sociated with the need to potentially manipulate multiple
mediators at a given time.

We approach sepsis treatment as a sequential decision-
making problem, in which an agent decides which cytokine-
mediating drugs to administer and at what dosages at clini-
cally relevant time scales. A simulation of sepsis is a neces-
sary tool to open the disease up to computational analysis
and control. Thus, we leverage the Innate Immune Response
Agent-Based Model (IIRABM) (An, 2004), a widely used
sepsis simulation (Petersen et al., 2018; Cockrell & An;
2018; 2021), as a starting point for our studies.

Previous works have successfully applied deep reinforce-
ment learning to similar sequential decision-making prob-
lems, including simulations of sepsis (Petersen et al., 2018);
however, the resulting policies (treatments) are represented
by neural networks (NNs), which are notoriously diffi-
cult to interpret (Montavon et al., 2018). While effective,
such black-box models are especially undesirable in health-
related domains, where interpretability and safety are cru-
cial design requirements. Failure modes can also occur
unexpectedly and inexplicably, and assessing such risks
is challenging if not infeasible. For these reasons, treat-
ment policies based on black-box models are unlikely to be
deemed acceptable for deployment on real patients.

A related problem is that black-box (e.g. NN-based) mod-
els tend to be dense: that is, all actions are used at each
time step, and all observations affect the choice of all ac-
tions. However, many healthcare applications (and simula-
tions thereof) exhibit many plausible drug candidates, e.g.
cytokine-regulating drugs for sepsis. Indeed, a large part of
the challenge is learning which drug or combination of drugs
to use. Thus, a key design criteria for clinically adoptable
policies is that they are sparse in their selection of drugs.

Inspired by recent advances in learning symbolic control
policies (Landajuela et al., 2021), we address the above
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Figure 1. Overview of our pipeline for learning sparse, fully symbolic policies for a reinforcement learning environment.

challenges by proposing a pipeline for learning sparse, inter-
pretable symbolic policies for sepsis treatment. Unlike pre-
vious works, our method produces policies that are sparse,
in that they only use a subset of available actions (drugs),
and interpretable, in that outputs are human-readable ex-
pressions, from which clinical insights can be gleaned by
domain experts simply by inspection.

We summarize our contributions as: (1) a pragmatic pipeline
for discovering sparse, interpretable, symbolic policies for
novel treatment discovery, (2) a sparse symbolic policy that
halves the baseline sepsis mortality rate for in silico ex-
periments on the IIRABM, and (3) a clinically meaningful
interpretation of the discovered symbolic policy.

2. Background & Related Work

To represent sepsis in silico, we utilize the innate immune
response agent-based model (IIRABM). The IIRABM rep-
resents the human endothelial-blood interface that incor-
porates the primary drivers of innate immunity and en-
dothelial remodeling post injury, including endothelial cells,
macrophages (of multiple polarities), polymorphonuclear
leukocytes, T0, Ty 1, and T2 cells, as well as the associated
precursor cells. Previous work has shown that the aggregate
output of the model can be considered to be a random dy-
namical system (Cockrell & An) which captures the clinical
heterogeneity seen in the septic population.

We highlight the most critical details of the IRABM here
(see An (2004) and Petersen et al. (2018) for further de-
tails). The environment observations comprise a vector of
various cytokine (small signaling molecule) concentrations,
along with a measure of aggregate tissue damage. Actions
represent putative cytokine-mediating drugs. Specifically,
each of the 11 cytokines ¢ has an action a. € [—1, 1] that
either augments (a. > 0) or inhibits (a. < 0) the effects of
that cytokine’s interactions within the IRABM. Actions are
selected every 12 hr simulated time, reflecting a clinically
relevant timescale for changing dosages.

Initial attempts at identifying therapeutic control strategies
utilizing the [IRABM demonstrated that simple treatment
regimes (e.g. give one/a few drugs intermittently) are inef-
fective (An, 2004). Cockrell & An (2018) leveraged genetic
algorithms to treat simulated septic patients, significantly
lowering mortality rate. However, upon examination of the
in silico patients that did not heal, it was observed that the
genetic algorithm-based policy led the patient into a config-
uration from which it was unable to heal. Thus, while the
policy was successful for the majority, it was harmful to a
minority, motivating the need for an adaptive policy.

Reinforcement learning (RL) has been very successful in
similar settings, including in medical and health applica-
tions (Yu et al., 2020). Various RL algorithms have been
applied to clinical care, including cancer chemotherapy drug
dosage, (Ahn & Park, 2011; Zhao et al., 2009; Padmanab-
han et al., 2017) and sepsis treatment (Komorowski et al.,
2016; 2018; Raghu et al., 2017; Petersen et al., 2018). How-
ever, most of the proposed methods for sepsis treatment rely
on pre-collected clinical care datasets such as MIMIC-III
(Johnson et al., 2016). This means that they cannot leverage
a simulator for testing hypothetical interventions, such as
the application of a new drug or drug combination.

Similarly to our approach, Petersen et al. (2018) leveraged
an earlier version of the IRABM to train and evaluate RL
policies. However, the learned NN-based policies were
dense and difficult to interpret. Recent works propose meth-
ods such as saliency maps to partially interpret NN models
(Douglas et al., 2019; Fan et al., 2020). However, these
methods do not provide the level of interpretability required
to build sufficient confidence in medical domains. For this
reason, interpretable tree-based models have been used in
medicine despite achieving worse performance than NN
models (Laber & Zhao, 2015).
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3. Methods

Our pipeline, illustrated in Figure 1, comprises four main
steps: (1) train a NN-based policy', (2) iteratively simplify
the NN-based policy, (3) distill the NN-based policy into a
symbolic policy, and (4) iteratively sparsify the symbolic
policy.

Training a NN-based policy. We train a neural-network
based policy using the Covariance Matrix Adaptation Evolu-
tionary Strategy (CMA-ES) (Igel et al., 2007; Hansen, 2016)
implementation in ESTool (Ha, 2017). We train on a single
IIRABM parameterization, only changing the random seed
each episode. The policy network is composed of one input
layer with 12 units, two hidden layers each with 64 units,
and one output layer with 11 units. Hyperbolic tangent acti-
vations are applied at each layer. Hereafter, we refer to this
NN-based policy as Anchor.

Simplifying the NN-based policy. After obtaining An-
chor, we seek to simplify it by determining which action
dimensions can be locked or “clamped” to either extrema
of their allowed range, instead of using the dynamic value
prescribed by the NN. We determine which actions can be
set to constants by iterative over each action dimension in
Anchor and evaluating it with each action clamped to +1 or
-1. If the performance decreases by less than 5%, then that
action is locked or clamped to +1 or -1. Hereafter, we refer
to this simplified NN-based policy as Clamped Anchor.

Algorithm 1 Policy simplification

foriel,...,Ndo
forj € —1,1do
Action a; = j
Performance P gathered from evaluation run.
if P within 5% of normal performance then
Action “clamped” at a; = j.
break

Searching for a symbolic policy. To distill Clamped An-
chor into a symbolic policy, we leverage Deep Symbolic
Policies (DSP) (Landajuela et al., 2021). DSP begins with
a pre-trained neural network “anchor” policy, then em-
ploys neural-guided search to directly search the space sym-
bolic expressions, learning one action dimension at a time.
See Landajuela et al. (2021) for details. Beginning with
Clamped Anchor, we perform DSP on each non-constant
action dimension, resulting in a fully symbolic policy. Here-
after, we refer to this symbolic policy as Dense Symbolic.

Sparsifying the symbolic policy. To increase the simplicity
and interpretability of the resulting symbolic policy, we
investigate “sparse policies.” These policies aim to replace

'In general, this step can use a policy of any form. For simplic-
ity, we assume NN-based policies throughout.

as many actions as possible with a zero without having an
adverse effect on performance.

The final policy resulting from this pipeline consists entirely
of constant values and parsimonious symbolic representa-
tions of a subset of the action dimensions. Hereafter, we
refer to this sparsified symbolic policy as Sparse Symbolic.

Algorithm 2 Policy sparsification

forie1,...,Ndo
Actiona; =0
Performance P gathered from evaluation run.
if P within 5% of normal performance then
Action locked at a; = 0.

4. Results

Experimental setup. The anchor policy is trained using
CMA-ES. For DSP, we use default hyperparameters (Lan-
dajuela et al., 2021), with a library of allowable symbols
{+, —, X, =, sin, cos, exp, log, —1,0.1, 1,5, 51, ..., Sn },
where s; is the ith observation dimension.

We evaluate each algorithm by running it over 100 different
patient parameter sets, each with 3 seeds, taken from a hold-
out set not seen during training. IRABM patient parameters
include a measure of host resilience, two meausures of mi-
crobial virulence (invasiveness and toxivenesis), a measure
of environmental toxicity/contamination, and an initial in-
jury severity. Each patient parameter set has an associated
baseline mortality rate that occurs when there is no cytokine
intervention. Our evaluation set of patients has an average
baseline mortality rate of 55.73%, ranging from 1% to 99%.

Final sparse symbolic policy. The final sparse symbolic
policy comprises 2 expressions, 6 zero-valued actions (i.e.
that drug is unused), and 3 non-zero constants. The two
expressions are: arng = sin(IL8) — sin(sIL1r) and a3 =
cos(IL8 — IL1). The zero-valued actions are: asrnpr =
aGCSF = OIFNy = aiL1 = a4 = a2 = 0. The non-zero
constant actions are: apar = asir = 1 and a9 = —1.
Note that a. refers to mediation of cytokine c¢; positive
values augment (up-regulate) c and negative values inhibit
(down-regulate) c.

Notably, while both symbolic policies leverage periodic
functions, the periodicity is not observed within the ranges
of observations the environment takes on. For example,
the cosine operator in ay g can be replaced with up to the
quadratic term of the Taylor expansion, and still achieves
the same performance.

Performance evaluation. For empirical analysis, we evalu-
ate policies at each of the four stages of our pipeline, as well
as a policy that prescribes no intervention (a. = 0 for all
cytokines). Table 1 shows the results achieved by each pol-
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Clamped Dense Sparse
None Anchor Anchor Symbolic | Symbolic
Mortality 55.7% 10.3% 37.0% 33.0% 29.0%
Symbolic? N/A X X
Sparse? N/A X X X

Table 1. Performances of a no-intervention policy (None), NN-
based policy (Anchor), simplified NN-based policy with clamped
actions (Clamped Anchor), a symbolic policy generated using
DSP (Dense Symbolic), and a sparsified symbolic policy with
most dimensions fixed to zero (Sparse Symbolic).

icy. Anchor has a mortality rate of 10.3% over the 100 test
patients; thus, it generalizes well across patients. The final
Sparse Symbolic policy has a mortality rate of 29%. Thus,
we demonstrate a performance-simplicity trade-off between
dense NN-based policies and sparse symbolic policies.
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Figure 2. Heatmap illustrating the only two non-constant dimen-
sions of our sparsified symbolic policy.

Action: TNF Action: IL8

ILL0=PAF=IL1=sIL1r
o
ILLO=PAF=IL1=sIL1r

TNF:

-0.25

-0.50

oxyDeficit=TNF
oxyDeficit

-0.75

1
STNFr=GCSF=IFNg=IL4=IL8=IL12 ~1.00

STNFr=GCSF=IFNg=IL4=IL8=IL12

Figure 3. Heatmap representing the trained anchor policy. Notice
that a heatmap was generated for each action used by the symbolic
policy for comparison purposes, but the anchor policy also uses
the other 9 actions.

5. Discussion

Our sparse symbolic policy approximately halves the mor-
tality rate, from a baseline of 56% without intervention
to 29% with intervention. While not as effective as the
10.3% mortality of the NN-based anchor policy, our method
highlights the trade-off between performance and three key
desirable features: simplicity, sparsity, and interpretability.

First, the sparse symbolic policies are dramatically simpler
than their NN counterparts. Our discovered expressions con-

tain only a handful of mathematical operators; in contrast,
NN policies consist of thousands of real-valued parameters,
requiring several matrix multiplications wrapped by nonlin-
earities. To illustrate this, we juxtapose a visualization of
the symbolic policy (Figure 2) with the NN policy (Figures
3). Notably, the NN policy is so high-dimensional that we
cannot even visualize it without looking at high-dimensional
slices of the observation space.

Second, our symbolic policies are sparse. That is, they
contain many zero-valued action dimensions, meaning that
many of the possible drug candidates are never administered
by the policy. This is a highly desirable feature in the clinical
setting, as using fewer drugs can reduce side effects and the
chances of drug-drug interactions.

Third, by virtue of being symbolic, we can glean clinical
understanding by analyzing the expressions. To this end,
we provide a clinical interpretation of the discovered policy.
The policy’s manipulation of the IL8 pathway is consistent
with its known role of signaling distress of damaged en-
dothelial cells to inflammatory cells (Harada et al., 1994).
In episodes where the patient healed under the policy, we
observe near maximal augmentation of the IL8 protein syn-
thesis pathway, increasing the spatial range from which
a distressed cell can recruit help. The role of IL1 is to
propagate the inflammatory response. When IL8 and IL1
begin to diverge, it indicates the inflammation is (danger-
ously) propagating faster than the innate immune system’s
ability to contain it, which the policy mitigates by down-
regulating IL8 in response to this increasing divergence
(ais = cos(IL8 — IL1) when 0 < (IL8 — IL1) < ~0.5).
The constant augmentation of PAF (Zimmerman et al., 2002)
serves a similar purpose as that molecule attracts neutrophils
to sites of infection, effectively increasing the immune
response to microbial infection. This specific version of
the IIRABM was specialized to simulate a hypoinflamma-
tory/immunocompromised patient. The function of IL10
(Saraiva & O’garra, 2010) is to limit inflammation; in the
immunocompromised patient, the ability to generate inflam-
mation is inherently limited, and thus the policy’s constant
inhibition of IL10 is clinically realistic.

6. Conclusion

We propose a pipeline to discover sparse symbolic policies
for sepsis treatment via cytokine modulation. Beginning
with a high-dimensional NN-based policy, our pipeline first
simplifies the policy by clamping a subset of action dimen-
sions to constant values. We then leverage Deep Symbolic
Policy to learn symbolic representations of the remaining
actions. Finally, we sparsify the symbolic policy be replac-
ing a subset of action dimensions with zero (no action). We
demonstrate a proof-of-concept of this approach by apply-
ing it to an existing sepsis simulation. We find that sparse
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symbolic policies can still be effective in treating simulated
patients, while achieving several major benefits: sparsity,
simplicity, and interpretability. In the future, we plan to ex-
pand the set of patient parameters to span a range of clinical
heterogeneity and hope that methods for sparse symbolic
policy discovery will enable learning interpretable treatment
strategies that directly lead to actionable clinical insights.
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