Skip to main content
Log in

Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Sorghum accumulates epi-cuticular wax (EW) in leaves, sheaths, and culms. EW reduces the transpirational and nontranspirational (nonstomatal) water loss and protects the plant from severe drought stress in addition to imparting resistance against insect pests. Results presented here are from the analysis of EW content of 387 diverse sorghum accessions and its genome-wide association study (GWAS). EW content in sorghum leaves ranged from 0.1 to 29.7 mg cm−2 with a mean value of 5.1 mg cm−2. GWAS using 265,487 single nucleotide polymorphisms identified thirty-seven putative genes associated (P < 9.89E−06) with EW biosynthesis and transport in sorghum. Major EW biosynthetic genes identified included 3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase III, an Ankyrin repeat protein, a bHLH-MYC, and an R2R3-MYB transcription factor. Genes involved in EW regulation or transport included an ABC transporter, a Lipid exporter ABCA1, a Multidrug resistance protein, Inositol 1, 3, 4-trisphosphate 5/6-kinase, and a Cytochrome P450. This GWA study thus demonstrates the potential for genetic manipulation of EW content in sorghum for better adaptation to biotic and abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    PubMed  CAS  Google Scholar 

  • Abbadi A, Brummel M, Schutt BS, Slabaugh MB, Schuch R, Spener F (2000) Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme. Biochem J 345:153–160

    PubMed  PubMed Central  CAS  Google Scholar 

  • Adeyanju A, Little C, Yu J, Tesso T (2015) Genome-wide association study on resistance to stalk rot diseases in grain sorghum. G3 (Bethesda) 5:1165–1175

    CAS  Google Scholar 

  • Atkin DSJ, Hamilton RJ (1982) The changes with age in the epicuticular wax of Sorghum bicolor. J Nat Prod 45:697–703

    CAS  Google Scholar 

  • Avato PN, Bianchi G, Mariani G (1984) Epicuticular waxes of sorghum and some compositional changes with plant age. Phytochemistry 23:2843–2846

    CAS  Google Scholar 

  • Ayyangar GN, Ponnaiya BWX (1941) The occurrence and inheritance of a bloomless sorghum. Curr Sci 10:408–409

    Google Scholar 

  • Baker EA (1974) The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytologist 73(5):955–966

    CAS  Google Scholar 

  • Bellis ES, Kelly EA, Lorts CM, Gao H, DeLeo VL, Rouhan G, Budden A, Bhaskara GB, Hu Z, Muscarella R, Timko MP, Nebie B, Runo SM, Chilcoat ND, Juenger TE, Morris GP, dePamphilis CW, Lasky JR (2020) Genomics of sorghum local adaptation to a parasitic plant. Proc Natl Acad Sci 117(8):4243–4251

    PubMed  CAS  Google Scholar 

  • Bengston C, Larsson S, Liljenberg C (1978) Effects of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiol Plant 44:319–324

    Google Scholar 

  • Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775

    PubMed  CAS  Google Scholar 

  • Bernard A, Joubes J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    PubMed  CAS  Google Scholar 

  • Bird DA (2008) The role of ABC transporters in cuticular lipid secretion. Plant Sci 174:563–569

    CAS  Google Scholar 

  • Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498

    PubMed  CAS  Google Scholar 

  • Blum A (1975) Effect of the Bm gene on epicuticular wax deposition and the spectral characteristics of sorghum leaves. SABRAO J 7:45–52

    Google Scholar 

  • Burow GB, Franks CD, Acosta-Martinez V, Xin Z (2009) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.). Theor Appl Genet 118:423–431

    PubMed  CAS  Google Scholar 

  • Campbell BC, Gilding EK, Mace ES, Tai S, Tao Y, Prentis PJ, Thomelin P, Jordan DR, Godwin ID (2016) Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy. Plant Biotechnol J 14:2240–2253

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra R, Burow G, Burke JJ, Gladman N, Xin Z (2017) Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. BMC Plant Biol 17:12

    PubMed  PubMed Central  Google Scholar 

  • Ebercon A, Blum A, Jordan WR (1977) A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop Sci 17:179–180

    Google Scholar 

  • Edwards PB (1982) Do waxes on juvenile Eucalyptus leaves provide protection from grazing insects? Aust J Ecol 7:347–352

    Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    PubMed  CAS  Google Scholar 

  • Eigenbrode SD (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthropod Struct Dev 33:91–102

    PubMed  CAS  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Google Scholar 

  • El-Otmani M, Arpaia ML, Coggins CW Jr, Pehrson JE Jr, O’connell NV (1989) Developmental changes in ‘Valencia’ orange fruit epicuticular wax in relation to fruit position on the tree. Sci Hortic 41:69–81

    Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genom 280:547–563. https://doi.org/10.1007/s00438-008-0386-6

    Article  CAS  Google Scholar 

  • Frangne N, Eggmann T, Koblischke C, Weissenbock G, Martinoia E, Klein M (2002) Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H + -antiport and ATP-binding cassette-type mechanisms. Plant Physiol 128:726–733

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129:967–973

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, Mengiste T, Ejeta G (2017) Mutation in sorghum LGS1 alters strigolactones. Proc Natl Acad Sci 114(17):4471–4476

    PubMed  CAS  Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    PubMed  CAS  Google Scholar 

  • Jacq A, Pernot C, Martinez Y, Domergue F, Payre B, Jamet E, Burlat V, Pacquit VB (2017) The arabidopsis lipid transfer protein 2 (AtLTP2) is involved in cuticle-cell wall interface integrity and in etiolated hypocotyl permeability. Front Plant Sci 8:263

    PubMed  PubMed Central  Google Scholar 

  • Jefferson PG, Johnson DA, Asay KH (1989) Epi cuticular wax production, water status and leaf temperature in Triticeae range grasses of contrasting visible glaucousness. Can J Plant Sci 69:513–519

    Google Scholar 

  • Jenks MA, Rich PJ, Ashworth EN (1994) Involvement of cork cells in the secretion of epicuticular wax filaments on Sorghum bicolor (L.) Moench. Int J Plant Sci 155:506–518

    Google Scholar 

  • Jiao Y, Burke J, Chopra R, Burow G, Chen J, Wang B, Hayes C, Emendack Y, Ware D, Xin Z (2016) A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28:1551–1562

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jiao Y, Burow G, Gladman N, Acosta-Martinez V, Chen J, Burke J, Ware D, Xin Z (2017) Efficient identification of causal mutations through sequencing of bulked F 2 from two allelic bloomless mutants of Sorghum bicolor. Front Plant Sci 8:2267

    PubMed  Google Scholar 

  • Kang NK, Jeon S, Kwon S, Koh HG, Shin S, Lee B, Choi G, Yang J, Jeong B, Chang YK (2015) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200. https://doi.org/10.1186/s13068-015-0386-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur V, Yadav SK, Wankhede DP, Pulivendula P, Kumar A, Chinnusamy V (2020) Cloning and characterization of a gene encoding MIZ1, a domain of unknown function protein and its role in salt and drought stress in rice. Protoplasma 257(2):475–487

    PubMed  CAS  Google Scholar 

  • Kim DH, Park MJ, Gwon GH, Silkov A, Xu ZY, Yang EC, Song S, Song K, Kim Y, Yoon HS, Honig B, Cho W, Cho Y (2014) An ankyrin repeat domain of AKR2 drives chloroplast targeting through coincident binding of two chloroplast lipids. Dev Cell 30(5):598–609. https://doi.org/10.1016/j.devcel.2014.07.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimani W, Zhang L, Wu X, Hao H, Jing H (2020) Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genom 21:112. https://doi.org/10.1186/s12864-020-6538-8

    Article  CAS  Google Scholar 

  • Koch K, Hartmann KD, Schreiber L, Barthlott W, Neinhuis C (2006) Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ Exp Bot 56(1):1–9

    CAS  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151(4):1918–1929

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    PubMed  CAS  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    PubMed  CAS  Google Scholar 

  • Lewandowska M, Keyl A, Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytol. https://doi.org/10.1111/nph.16571

    Article  PubMed  Google Scholar 

  • Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010) Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Lv M, Li X, Ye T, He X, Rong S, Dong Y, Guan Y, Gao X, Zhu J, Xu Z (2018) The rice OsDUF810 family: OsDUF810.7 may be involved in the tolerance to salt and drought. Mol Biol 52:489–496

    CAS  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    PubMed  CAS  Google Scholar 

  • Liu LX, Janvier K, Lecellier VB, Cartier N, Benarous R, Aubourg P (1999) Homo and heterodimerization of peroxisomal ATP-binding cassette half-transporters. J Biol Chem 274:32738–32743

    PubMed  CAS  Google Scholar 

  • Madhusudhana R, Patil JV (2012) A major QTL for plant height is linked with bloom locus in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 191:259–268

    Google Scholar 

  • Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H + -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10:146

    PubMed  PubMed Central  Google Scholar 

  • Mcfarlane HE, Watanabe Y, Yang W, Huang Y, Ohlrogge J, Samuels AL (2014) Golgi- and trans-Golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol 164:1250–1260

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mizuno H, Kawahigashi H, Ogata J, Minami H, Kanamori H, Nakagawa H, Matsumoto T (2013) Genomic inversion caused by gamma irradiation contributes to downregulation of a WBC11 homolog in bloomless sorghum. Theor Appl Genet 126:1513–1520

    PubMed  CAS  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci U S A 110:453–458

    PubMed  CAS  Google Scholar 

  • Mosser J, Lutz Y, Stoeckel ME, Sarde CO, Kretz C, Douar AM, Lopez J, Aubourg P, Mandel JL (1994) The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum Mol Genet 3:265–271

    PubMed  CAS  Google Scholar 

  • Peiretti RA, Amini I, Weibel DE, Starks KJ, Mcnew RW (1980) Relationship of “Bloomless” (bm bm) sorghum to greenbug resistance. Crop Sci 20:173–176

    Google Scholar 

  • Percy KE, Baker EA (1990) Effects of simulated acid rain on epicuticular wax production, morphology, chemical composition and on cuticular membrane thick ness in two clones of Sitka spruce [Picea sitchensis (Bong.) Carr.]. New Phytol 116:79–87

    CAS  Google Scholar 

  • Peterson GC, Krittika S, Weibel DE (1982) Inheritance of some bloomless and sparse-bloom mutants in sorghum. Crop Sci 22:63–67

    Google Scholar 

  • Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, Kunst L, Samuels AL (2004) Plant cuticular lipid export requires an ABC transporter. Science 306:702–704

    PubMed  CAS  Google Scholar 

  • Powell MBH, Tindall R, Schultz P, Paa D, O’brien J, Lampert P (1975) Adrenoleukodystrophy electron microscopic findings. Arch Neurol 32:256–260

    Google Scholar 

  • Punnuri S, Harris-Shultz K, Knoll J, Ni X, Wang H (2017) The genes and that affect epicuticular wax deposition in sorghum are allelic. Crop Sci 57:1552–1556

    CAS  Google Scholar 

  • Raineri J, Hartman MD, Chan RL, Iglesias AA, Ribichich KF (2016) A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth. Plant Cell Rep 35(9):1875–1890

    PubMed  CAS  Google Scholar 

  • R-Core-Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reddy BVS, Reddy PS, Sadananda AR, Dinakaran E, Kumar AA, Deshpande SP, Rao PS, Sharma HC, Sharma R, Krishnamurthy L, Patil JV (2012) Postrainy season sorghum: constraints and breeding approaches. J SAT Agric Res 10:1–12

    Google Scholar 

  • Reicosky DA, Hanover JW (1978) Physiological effects of surface waxes. I. Light reflectance for glaucous and non-glaucous Picea pungens. Plant Physiol 62:101–104

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL, Ramu P, Morris GP, Kresovich S (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J Agric Food Chem 62:10916–10927

    PubMed  CAS  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    PubMed  CAS  Google Scholar 

  • Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    PubMed  CAS  Google Scholar 

  • Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR, Tesso TT, Hamblin MT, Yu J (2012) Association mapping for grain quality in a diverse sorghum collection. Plant Genome J 5:126–135

    CAS  Google Scholar 

  • Tang Y, Tan S, Xue H (2013) Arabidopsis inositol 1,3,4-trisphosphate 5/6 kinase 2 is required for seed coat development. Acta Biochim Biophys Sin (Shanghai) 45:549–560

    CAS  Google Scholar 

  • Thomas DA, Barber HN (1974) Studies on leaf characteristics of a cline of Eucalyptus urnigera from mount Wellington, Tasmania. II. Reflection, transmission and absorption of radiation. Aust J Bot 22:701–707

    Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126:1649–1657

    PubMed  CAS  Google Scholar 

  • Uttam GA, Praveen M, Rao YV, Tonapi VA, Madhusudhana R (2017) Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 130:2109–2125

    PubMed  CAS  Google Scholar 

  • Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z (2014) A super powerful method for genome wide association study. PLoS ONE 9:e107684

    PubMed  PubMed Central  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22:2370–2379

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xue D, Zhang X, Lu X, Chen G, Chen ZH (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    PubMed  PubMed Central  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    PubMed  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Y, Deng X, Qu A, Zhang M, Tao Y, Yang L, Liu Y, Xu J, Zhang S (2018) Regulation of pollen lipid body biogenesis by MAP kinases and downstream WRKY transcription factors in Arabidopsis. PLoS Genet 14(12):e1007880

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank GRIN and Dr. Wilfred Vermerris (University of Florida) for providing the sorghum mapping panels SAP and MNC respectively. We thank Qixian Tan for sample collection, wax extraction and data recording. We thank Dr. Gregory Wayne Roth for his advice during field experiments. We acknowledge the assistance of Jin Cui, Debamalya Chatterjee, Iffa Gaffoor, Kameron Wittmeyer and Bin Liu for field sample collection and phenotyping. We thank Scott Harkcom, Penn State Agronomy farm manager for facilitating field preparation and assistance with crop management.

Funding

This work was supported by a USDA/NIFA Awards 2011-67009-30017, 2019-70006-30442, and AES Awards PEN04430 and PEN04613 to SC.

Author information

Authors and Affiliations

Authors

Contributions

DE and WX designed experiments, collected and analyzed data, and wrote the manuscript; SC obtained funding, designed experiments, wrote, and edited the manuscript.

Corresponding author

Correspondence to Surinder Chopra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

For the special issue of “Plant Genetics and Genomics Conference”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elango, D., Xue, W. & Chopra, S. Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. Physiol Mol Biol Plants 26, 1727–1737 (2020). https://doi.org/10.1007/s12298-020-00848-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00848-5

Keywords

Navigation