Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites

Abstract

Defect-induced non-radiative losses are currently limiting the performance of hybrid perovskite devices. Experimental reports have indicated the existence of point defects that act as detrimental non-radiative recombination centres under iodine-poor synthesis conditions. However, the microscopic nature of these defects is still unknown. Here we demonstrate that hydrogen vacancies can be present in high densities under iodine-poor conditions in the prototypical hybrid perovskite MAPbI3 (MA = CH3NH3). They act as very efficient non-radiative recombination centres with an exceptionally high carrier capture coefficient of 10−4 cm3 s−1. By contrast, the hydrogen vacancies in FAPbI3 [FA = CH(NH2)2] are much more difficult to form and have a capture coefficient that is three orders of magnitude lower. Our study unveils the critical but overlooked role of hydrogen vacancies in hybrid perovskites and rationalizes why FA is essential for realizing high efficiency in hybrid perovskite solar cells. Minimizing the incorporation of hydrogen vacancies is key to enabling the best performance of hybrid perovskites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energetically favourable native defects in MAPbI3.
Fig. 2: Hydrogen vacancies in MAPbI3.
Fig. 3: Non-radiative capture by hydrogen vacancies in MAPbI3.
Fig. 4: Hydrogen vacancies in FAPbI3 and their induced non-radiative recombination.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and the Supplementary Information. The raw first-principles data are available in the NOMAD repository (https://nomad-lab.eu/), associated with the authors of this article.

Code availability

The code for computing non-radiative capture coefficients is available at https://doi.org/10.5281/zenodo.4274317.

References

  1. Best Research-Cell Efficiency Chart (NREL, accessed 25 September 2020); https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf

  2. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  CAS  Google Scholar 

  3. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  Google Scholar 

  4. Du, M.-H. Density functional calculations of native defects in CH3NH3PbI3: effects of spin–orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015).

    Article  CAS  Google Scholar 

  5. Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018).

    Article  CAS  Google Scholar 

  6. Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Correctly assessing defect tolerance in halide perovskites. J. Phys. Chem. C 124, 6022–6027 (2020).

    Article  CAS  Google Scholar 

  7. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Phys. Rev. B 101, 140101(R) (2020).

    Article  Google Scholar 

  8. Zhang, X., Shen, J.-X., Turiansky, M. E. & Van de Walle, C. G. Hidden role of Bi incorporation in nonradiative recombination in methylammonium lead iodide. J. Mater. Chem. A 8, 12964–12967 (2020).

    Article  CAS  Google Scholar 

  9. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  CAS  Google Scholar 

  10. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  Google Scholar 

  11. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  CAS  Google Scholar 

  12. Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article  CAS  Google Scholar 

  13. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  14. Ming, W., Chen, S. & Du, M.-H. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH3NH3PbI3. J. Mater. Chem. A 4, 16975–16981 (2016).

    Article  CAS  Google Scholar 

  15. Meggiolaro, D. & De Angelis, F. First-principles modeling of defects in lead halide perovskites: best practices and open issues. ACS Energy Lett. 3, 2206–2222 (2018).

    Article  CAS  Google Scholar 

  16. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  17. Bagraev, N. & Mashkov, V. A mechanism for two-electron capture at deep level defects in semiconductors. Solid State Commun. 65, 1111–1117 (1988).

    Article  Google Scholar 

  18. Alkauskas, A., Yan, Q. & Van de Walle, C. G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90, 075202 (2014).

    Article  CAS  Google Scholar 

  19. Henry, C. H. & Lang, D. V. Nonradiative capture and recombination by multiphonon emission in GaAs and GaP. Phys. Rev. B 15, 989–1016 (1977).

    Article  CAS  Google Scholar 

  20. Suppan, P. in Photoinduced Electron Transfer IV, Vol. 163 (Ed. Mattay, J.) 95–130 (Springer, 1992).

  21. Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A. & Kanemitsu, Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 136, 11610–11613 (2014).

    Article  CAS  Google Scholar 

  22. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Article  CAS  Google Scholar 

  23. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  24. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  CAS  Google Scholar 

  25. Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O. & Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016).

    Article  CAS  Google Scholar 

  26. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  CAS  Google Scholar 

  27. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  28. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  29. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  30. Frohna, K. et al. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 9, 1829 (2018).

    Article  Google Scholar 

  31. Baikie, T. et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013).

    Article  CAS  Google Scholar 

  32. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    Article  CAS  Google Scholar 

  33. Han, Q. et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  CAS  Google Scholar 

  34. Fabini, D. H. et al. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angew. Chem. Int. Ed. 55, 15392–15396 (2016).

    Article  CAS  Google Scholar 

  35. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  36. Freysoldt, C., Neugebauer, J. & Van de Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).

    Article  Google Scholar 

  37. Marston, C. C. & Balint-Kurti, G. G. The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys. 91, 3571–3576 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award No. DE-SC0010689. Computational resources were provided by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge J. Rogal and W. Wang for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and C.G.V.d.W. designed the project. X.Z., J.-X.S. and M.E.T. performed all calculations and analyses under the supervision of C.G.V.d.W. All the authors discussed the results and contributed to the manuscript writing.

Corresponding authors

Correspondence to Xie Zhang or Chris G. Van de Walle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Materials thanks Wan-Jian Yin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shen, JX., Turiansky, M.E. et al. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021). https://doi.org/10.1038/s41563-021-00986-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00986-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing