Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustainable aquaculture through the One Health lens

Abstract

Aquaculture is predicted to supply the majority of aquatic dietary protein by 2050. For aquaculture to deliver significantly enhanced volumes of food in a sustainable manner, appropriate account needs to be taken of its impacts on environmental integrity, farmed organism health and welfare, and human health. Here, we explore increased aquaculture production through the One Health lens and define a set of success metrics — underpinned by evidence, policy and legislation — that must be embedded into aquaculture sustainability. We provide a framework for defining, monitoring and averting potential negative impacts of enhanced production — and consider interactions with land-based food systems. These metrics will inform national and international science and policy strategies to support improved aquatic food system design.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: One Health approach to sustainable food system design and analysis.
Fig. 2: One Health success metrics for sustainable aquaculture.
Fig. 3: Application of One Health success metrics to aquaculture and related sub-sectors.

Similar content being viewed by others

References

  1. FAO The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals (Food and Agriculture Organization of the UN, 2018).

  2. FAO Fishery and Aquaculture Statistics Yearbook 2016 (Food and Agriculture Organization of the UN, 2016).

  3. Stead, S. M. Using systems thinking and open innovation to strengthen aquaculture policy for the United Nations Sustainable Development Goals. J. Fish Biol. 94, 837–844 (2018).

    Google Scholar 

  4. Berry, E. M., Dernini, S., Burlingame, B., Meybeck, A. & Conforti, P. Food security and sustainability: can one exist without the other? Publ. Health Nutr. 18, 2293–2302 (2014).

    Article  Google Scholar 

  5. De Silva, S. S. & Davy, F. B. (eds) in Success Stories in Asian Aquaculture https://doi.org/10.1007/978-90-481-3087-0_1 (Springer, 2010).

  6. Midtlyng, P. J., Grave, K. & Horsberg, T. E. What has been done to minimize the use of antibacterial and antiparasitic drugs in Norwegian aquaculture? Aquacult. Res. 42, 28–34 (2011).

    Article  Google Scholar 

  7. Carboni, S. et al. Mussel consumption as a “food first” approach to improve omega-3 status. Nutrients 11, 1381 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  8. Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquacult. 12, 499–512 (2019).

    Article  Google Scholar 

  9. Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).

    Article  Google Scholar 

  10. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Jennings, S. Aquatic food security: trends, challenges and solutions for a single nation embedded in a dynamic global web of producers, processors and markets. Fish Fisher. 17, 893–938 (2016).

    Article  Google Scholar 

  12. Lester, S. E., Gentry, R. R., Kappel, C. V., White, C. & Gaines, S. D. Offshore aquaculture in the United States: untapped potential in need of smart policy. Proc. Natl Acad. Sci. USA 115, 7162–7165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Graaf, G. & Xuan, T. Extensive shrimp farming, mangrove clearance and marine fisheries in the southern provinces of Vietnam. Mangroves Salt Marshes 2, 159–166 (1998).

    Article  Google Scholar 

  15. Nakamura, K. et al. Seeing slavery in seafood supply chains. Sci. Adv. 4, e1701833 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Kauffman, J. B. et al. The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Front. Ecol. Environ. 15, 183–188 (2017).

    Article  Google Scholar 

  17. Henriksson, P. J. G., Järviö, N., Jonell, M., Guinée, J. B. & Troell, M. The devil is in the details—the carbon footprint of a shrimp. Front. Ecol. Environ. 16, 10–11 (2018).

    Article  Google Scholar 

  18. Price, M. H. H. et al. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada’s west coast. PLoS ONE 6, e16851 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crego-Prieto, V. et al. Aquaculture and the spread of introduced mussel genes in British Columbia. Biol. Invasions 17, 2011–2026 (2015).

    Article  Google Scholar 

  20. Sugiura, S. H. Phosphorus, aquaculture, and the environment. Rev. Fish. Sci. Aquacult. 26, 515–521 (2018).

    Article  Google Scholar 

  21. Higuera-Llantén, S. et al. Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. PLoS ONE 13, e0203641 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ceballos, A., Dresdner-Cid, J. D. & Quiroga-Suazo, M. A. Does the location of salmon farms contribute to the reduction of poverty in remote coastal areas? An impact assessment using a Chilean case study. Food Policy 75, 68–79 (2018).

    Article  Google Scholar 

  23. Vince, J. & Haward, M. Hybrid governance in aquaculture: certification schemes and third party accreditation. Aquaculture 507, 322–328 (2019).

    Article  Google Scholar 

  24. Toufique, K. A. & Belton, B. Is aquaculture pro-poor? Empirical evidence of impacts on fish consumption in Bangladesh. World Dev. 64, 609–620 (2014).

    Article  Google Scholar 

  25. Toufique, K. A., Farook, S. & Belton, B. Managing fisheries for food security: implications from demand analysis. Mar. Resour. Econ. 33, 61–85 (2018).

    Article  Google Scholar 

  26. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article  Google Scholar 

  27. Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L. & Chookolingo, B. How much of the world’s food do smallholders produce? Glob. Food Sec. 17, 64–72 (2018).

    Article  Google Scholar 

  28. Little, D. C. et al. Sustainable intensification of aquaculture value chains between Asia and Europe: a framework for understanding impacts and challenges. Aquaculture 493, 338–354 (2018).

    Article  Google Scholar 

  29. Stentiford, G. D. et al. New paradigms to solve the global aquaculture disease crisis. PLoS Path. 13, e1006160 (2017).

    Article  CAS  Google Scholar 

  30. Belton, B., Bush, S. R. & Little, D. C. Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob. Food Sec. 16, 85–92 (2018).

    Article  Google Scholar 

  31. Stentiford, G. D., Bass, D. & Williams, B. A. P. Ultimate opportunists—the emergent Enterocytozoon group microsporidia. PLoS Path. 15, e1007668 (2019).

    Article  CAS  Google Scholar 

  32. Bass, D., Stentiford, G. D., Wang, H.-C., Koskella, B. & Tyler, C. The pathobiome in animal and plant diseases. Trends Ecol. Evol. 34, 996–1008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Egan, S. & Gardiner, M. Microbial dysbiosis: rethinking disease in marine ecosystems. Front. Microbiol. 7, 991 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Henriksson, P. J. G. et al. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain. Sci. 13, 1105–1120 (2018).

    Article  PubMed  Google Scholar 

  35. Alday‐Sanz, V. et al. Facts, truths and myths about SPF shrimp in Aquaculture. Rev. Aquacult. 12, 76–84 (2020).

    Article  Google Scholar 

  36. Ying, C. et al. The effects of marine farm-scale sequentially integrated multi-trophic aquaculture systems on microbial community composition, prevalence of sulfonamide-resistant bacteria and sulfonamide resistance gene sul1. Sci. Total Environ. 643, 681–691 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Peeler, E. J. & Taylor, N. G. The application of epidemiology in aquatic animal health—opportunities and challenges. Vet. Res. 42, 94 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oidtmann, B. & Stentiford, G. D. White spot syndrome virus (WSSV) concentrations in crustacean tissues—a review of data relevant to assess the risk associated with commodity trade. Transbound. Emerg. Dis. 58, 469–482 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ottingera, M., Claussa, K. & Kuenzerb, C. Aquaculture: relevance, distribution, impacts and spatial assessments—a review. Ocean Coast. Managem. 119, 244–266 (2016).

    Article  Google Scholar 

  40. Verdegem, M. C. L. & Bosma, R. H. Water withdrawal for brackish and inland aquaculture, and options to produce more fish in ponds with present water use. Water Policy 11, 52–68 (2009).

    Article  Google Scholar 

  41. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) https://www.ipcc.ch/srocc/home/ (in the press).

  42. Fu, R. Global warming-accelerated drying in the tropics. Proc. Natl Acad. Sci. USA 24, 3593–3594 (2015).

    Article  ADS  CAS  Google Scholar 

  43. Grooten, M. & Almond, R. E. A. (eds) Living Planet Report 2018: Aiming Higher (WWF, 2018).

  44. Halpern, B. J. et al. Putting all foods on the same table: achieving sustainable food systems requires full accounting. Proc. Natl Acad. Sci. USA 116, 18152–18156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).

    Article  Google Scholar 

  46. Badiola, M., Mendiola, D. & Bostock, J. Recirculating Aquaculture Systems (RAS) analysis: main issues on management and future challenges. Aquacult. Eng. 51, 26–35 (2012).

    Article  Google Scholar 

  47. Ramankutty, N. et al. Trends in global agricultural land use: implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    Article  PubMed  Google Scholar 

  49. Hossain, M. & Hasan, M. R. An Assessment of Impacts from Shrimp Aquaculture in Bangladesh and Prospects for Improvement http://www.fao.org/3/a-i8064e.pdf (Food and Agriculture Organization of the UN, 2017).

  50. Brugère, C., Aguilar‐Manjarrez, J., Beveridge, M. C. M. & Soto, D. The ecosystem approach to aquaculture 10 years on—a critical review and consideration of its future role in blue growth. Rev. Aquacult. 11, 493–514 (2019).

    Article  Google Scholar 

  51. Hambrey, J. The 2030 Agenda and the Sustainable Development Goals: The Challenge for Aquaculture Development and Management (Food and Agriculture Organization of the UN, 2017).

  52. Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–96 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Gephart, J. A. & Pace, M. L Structure and evolution of the global seafood trade network. Environ. Res. Lett. 10, 125014 (2015).

    Article  ADS  Google Scholar 

  54. Lamb, A. et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Change 6, 488–492 (2016).

    Article  ADS  Google Scholar 

  55. Pretty, J. et al. Policy challenges and priorities for internalizing the externalities of modern agriculture. J. Environ. Plan. Manag. 44, 263–283 (2001).

    Article  Google Scholar 

  56. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Centre for Sustainable Aquaculture Futures (a collaboration between the Centre for Environment, Fisheries and Aquaculture Science and the University of Exeter) for funding under contract Cefas Seedcorn contract no. SP003 to host a workshop ‘Sustainable Aquaculture through the One Health Lens’ at the Department for Environment, Food and Rural Affairs (Defra) London, on 1 July 2019. The input to that workshop by colleagues from across Defra provided significant guidance for the material contained within this article.

Author information

Authors and Affiliations

Authors

Contributions

G.D.S. conceptualized the manuscript and led the development of the text, I.J.B., S.J.H., D.B., R.H., E.M.S., M.J.D., S.W.F., N.G.H.T., D.W.V.-J., R.v.A., E.J.P., W.A.H., L.S., R.B., I.K. and C.R.T. attended and presented at the ‘Sustainable Aquaculture through the One Health lens’ workshop in London on 1 July 2019 and wrote elements of this manuscript. D.C.B. and H.E.F. wrote elements of the manuscript and were involved with wide-ranging discussions on integration of One Health principles within aquaculture and sustainable food system design.

Corresponding author

Correspondence to G. D. Stentiford.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1 and 2, and Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stentiford, G.D., Bateman, I.J., Hinchliffe, S.J. et al. Sustainable aquaculture through the One Health lens. Nat Food 1, 468–474 (2020). https://doi.org/10.1038/s43016-020-0127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-0127-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing