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Balance strategy in hoverboard 
control
Mohammad Shushtari1*, Atsushi Takagi2, Judy Lee3, Etienne Burdet3 & Arash Arami1,4*

This study examines how people learn to perform lower limb control in a novel task with a hoverboard 
requiring to maintain dynamic balance. We designed an experiment to investigate the learning of 
hoverboard balance and two control strategies: A hip strategy, which mainly uses hip movements 
to change the angle of the foot, and an ankle strategy relying more on ankle motion to control the 
orientation of hoverboard plates controlling the motion. Motor learning was indicated by a significant 
10± 4 % decrease in the trial completion time (p < 0.001) and a significant 24 ± 11% decrease in total 
muscle activation (p < 0.001). Furthermore, the participants, who had no prior experience riding a 
hoverboard, learned an ankle strategy to maintain their balance and control the hoverboard. This is 
supported by significantly stronger cross-correlation, phase synchrony, lower dynamic time warping 
distance between the hoverboard plate orientation controlling hoverboard motion, and the ankle 
angle when compared to the hip angle. The adopted ankle strategy was found to be robust to the foot 
orientation despite salient changes in muscle group activation patterns. Comparison with results of an 
experienced hoverboard rider confirmed that the first-time riders adopted an ankle strategy.

Balance control integrates sensory information from the visual, vestibular, and somatosensory systems1–3 and 
involves different spinal and supraspinal reflex circuits, reticulospinal descending tract, and cortical control of 
upper and lower limbs. From a biomechanical perspective, balance control is divided into static and dynamic 
categories. In static balance, equilibrium is maintained by modulating the center of pressure (COP) such that the 
body’s center of gravity (COG) is always kept within the base of support while in dynamic balance, like walking4, 
the COG may go outside of the base of support.

Dynamic balance is essential for locomotion and sports activities, such as snowboarding5. It also plays an 
important role in the control of novel means of transportation like the hoverboard and Segway6–8. In contrast 
to the Segway, the hoverboard has no built-in stabilization. Instead, the stability comes from the rider, making 
the balance control more challenging in the initial phase of learning; however, it also makes the hoverboard 
more agile than the Segway as the COG can be shifted further away from the base of support. Balancing on the 
hoverboard resembles the balance control in quiet standing in the anterior/posterior direction where the feet 
are placed stationary side-by-side.

During quiet standing, people pivot about either the ankle or the hip to maintain their posture. The ankle 
strategy is discernible from dominant activation of muscles acting on the ankle resulting in plantarflexion and 
dorsiflexion to compensate for COG changes. The hip strategy involves the flexion and extension of the hip 
to regulate the COG to maintain balance. When the majority of the balancing comes from the hip, the ankle 
muscles show little agonistic activity4,9. Balance strategies are investigated by spatiotemporal analysis of the 
center of mass (COM) and joint angles when the balance is perturbed by a moving platform. In this regard, the 
relative phase and gain of the COM with respect to the platform displacement is used to distinguish elderly and 
young individuals’ balance strategy10 and to determine the potential of multiple sclerosis patients in adapting 
their balance strategies in the presence of random platform movements11. The same analysis is applied to the 
joint angles and showed that after balance training the balance strategy shifts from an ankle strategy to a multi-
joint strategy to compensate for random platform motions12. Additionally, as balance requires postural control 
about an unstable equilibrium (standing is similar to stabilizing an inverted pendulum), it requires learning an 
appropriate strategy to modulate the mechanical impedance at different joints13, which can be achieved through 
selective muscle co-activation. To this end, several studies have looked at the mechanical impedance of the hip 
and ankle in static posture14–16 and during walking17,18.
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Maintaining balance on a hoverboard is similar to stabilizing a cart-pendulum system19. Compared to quiet 
standing where the COG is kept within the base of support using ankle or hip strategies, the COP on the hover-
board is not directly controlled by the user. Instead, it is indirectly manipulated by the tilt angles of the hover-
board plates. As the user tilts the plates, the motors activate and rotate, generating a torque on the hoverboard’s 
wheel resulting in hoverboard translation. The user exploits this feature to perform goal-driven movements and 
to maintain balance, which is achieved by moving the base of support, a narrow area comprising the ground 
contact area of the two wheels that contains the COG. While balancing on a hoverboard or on the firm ground 
may appear to be very different in terms of control, in both cases, the COG can be controlled by dorsiflexion/
plantarflexion of the ankle, by flexion/extension of the hip or a multi-joint strategy12. The feet also remain 
stationary during both hoverboard standing and quiet standing, and in both situations either the tilt position 
(in hoverboard riding) or the applied torque (in quiet standing) must be regulated to maintain balance. Due 
to these similarities, the same terms of the ankle and hip strategies for hoverboard balance control are used in 
this paper. Each of these strategies is defined by which joint contributes more dominantly to the control of the 
orientation of the hoverboard plates.

Riding a hoverboard and performing goal-driven movements is, nevertheless, more complicated than quiet 
standing. For instance, a hoverboard rider has numerous degrees of freedom in moving the hoverboard forward 
or backward (including variations in the velocity and the trajectory of the hoverboard). This could lead to a 
variety of strategies for performing the motion while maintaining balance. This makes the hoverboard control 
a challenging and interesting motor control task, in which we can analyze the lower limb motor learning in 
first-time riders and investigate if a general control strategy emerges and if a specific group of muscles would 
be recruited for this task. The specific aims of this study are to (1) investigate if early motor learning in a novel 
full-body motor task (with a strong role of lower limbs) appears only in task-relevant measures (e.g., trial elapsed 
time) or also in muscle recruitment (e.g., decrease in muscle activation or co-activation), and if specific metrics 
can be identified to explain better riding performance; (2) identify the adopted balance strategy, its indicators 
and their correlation with performance; (3) investigate the robustness of the adopted hoverboard control strategy 
with respect to the feet postural variations and if such variations can interfere with early motor learning.

Methods
Experimental setup.  A hoverboard (Bluefin Classic Scooter, UK) was used for the experiment, which is 
equipped with two 350 W brush-less DC motors and reaches a maximum speed of 16 km/h. A hoverboard can 
be modeled as a cart pendulum system where its movement is controlled by the applied tilt to its plates (Fig. 1A). 
Ten MX13+ Cameras (Vicon, UK) were used to capture the kinematics of the hoverboard and participants’ lower 
limb positions at 150 Hz. A setting of “PlugInGait” with 16 markers was used to calibrate and label the par-
ticipant’s lower limb. Markers were placed on the left/right anterior superior iliac spine (LASI/RASI), left/right 
posterior superior iliac spine (LPSI/RPSI), the lower lateral 1/3 surface of the left/right thigh (LTHI/RTHI), the 
flexion-extension axis of the left/right knee (LKNE/RKNE), the lower 1/3 surface of the left/right shank (LTIB/
RTIB), the lateral malleolus along an imaginary line that passes through the transmalleolar axis of left/right 
ankle (LANK/RANK), the calcaneus at the same height above the plantar surface of the left/right foot as the toe 
marker (LHEE/RHEE), and the second metatarsal head, on the mid-foot side of the equinus break between fore-
foot and mid-foot of the left/right leg (LTOE/RTOE). Two additional markers were placed on the hoverboard 
extremities in order to measure its movement using motion capture.

Eight wireless electromyography (EMG) sensors (Trigno, Delsys, USA) with a sampling rate of 3000 Hz 
were placed on the following muscles of both legs: Tibialis Anterior (TA), Gastrocnemius Medial Head (GMH), 

A B C D

Figure 1.   (A)  Schematic of the joint angles and the hoverboard plate orientation (side view). (B) The feet 
are oriented 45◦ to the left of the hoverboard, corresponding to conditions A1 and A2. (C) Feet orientation in 
condition B. (D) Movement trajectory in the x-y plane from a representative participant #9 in condition A2. The 
line color (from red to blue) indicates the time. Grey lines indicate the goal lines participants had to cross.
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Biceps Femoris (BF), and Rectus Femoris (RF). EMG sensors were placed on the skin after shaving and skin 
surface cleaning with ethanol.  The motion capture system and EMG sensors were calibrated and synchronized.

Experimental protocol.  All participants provided written informed consent prior to participation. The 
study’s protocols and procedures were approved by the University of Waterloo (ORE#40451), Clinical Research 
Ethics Committee and conformed with the Declaration of Helsinki. Ten participants (age: 21.9± 0.74 years, and 
five females) without known sensorimotor impairment and without previous experience in riding a hoverboard 
or similar self-balanced equipment were recruited. They went through a 5-min familiarization session with the 
hoverboard to learn how to step up and down from it, stabilize their balance, and move and turn with feet placed 
neutrally (straight on the hoverboard plates) without any specific instruction.An additional participant (Male, 
age 38 years) with prior experience of riding a hoverboard was also asked to perform the trials. His data, consid-
ered as the “expert” data, was used for comparison purposes.

The experiment consisted of back and forth movements with the hoverboard with two non-straight feet orien-
tations. This would provide a novel, stable, and repeatable yet challenging task different than the familiarization 
phase. While back and forth movement reduces the required planning, the tilted feet orientation on hoverboard 
plates allows for a systematic study of the effect of feet postural variations on motor learning and balance strat-
egy. Colored tape was used to draw two parallel lines (Bottom and Top line) on the ground with a distance of 
0.6 m. Starting from the middle of the Bottom line, all participants were asked to perform as many back and 
forth movements between the two lines as possible (Fig. 1D). Forward movement is defined from the Bottom 
line to the Top line and backward movement from the Top to the Bottom line. One trial consists of a forward 
followed by a backward movement. The main experiment was split into trials under two different conditions. 
In the first condition (A1), participants were asked to stand on the hoverboard with their feet tilted at 45◦ to 
their left (Fig. 1B). In the second condition (B), they were asked to perform the same movement with their feet 
oriented at 45◦ to their right (Fig. 1C). Finally, participants completed movements with the feet oriented towards 
the left again (A2 condition). Each participant completed three conditions in total (A1, B, A2). Each condition 
lasted 60 s. Foot posture was checked before the start of each condition. After these trials, maximum voluntary 
contraction (MVC) of each muscle was also recorded to normalize the EMG signals20.

When the feet are oriented to the left in A1 condition, the right foot has a smaller moment arm compared 
to the left foot for applying torque to the hoverboard plate to move forward. The opposite is valid when feet are 
oriented to the right in condition B. Therefore, the dominant leg in the control of the hoverboard changes with 
the orientation of the feet. Assuming that a participant has learned a specific balance strategy in A1, condition B 
is introduced to interfere with their learned strategy and to test the robustness of the adopted strategy. The third 
condition (A2) tests whether the novel condition B had any impacts on the balancing strategy learned during 
the initial condition A1.

Data analysis.  Preprocessing.  One of the participants failed to perform the trials, and was excluded from 
the analysis. The data from the motion capture system and EMG sensors were split into half-trials (forward/
backward motion in each trial). This segmentation was carried out based on the extraction of prominent peaks 
of hoverboard position (computed on the data from the markers fixed on the hoverboard) smoothed using a 
moving average filter with a 0.67-s window. EMG signals were filtered with a third-order Butterworth bandpass 
filter with cutoff frequencies of 30 Hz and 450 Hz, respectively. After rectification, their RMS values were com-
puted using a moving RMS filter with a 1-s window. Moving window lengths are tuned such that the data from 
different half trials are not blended while the high-frequency fluctuations are filtered out. Next, each signal was 
normalized to its corresponding MVC value. Finally, each muscle onset/offset was computed using thresholds 
defined by two standard deviations of EMG-baseline variations20 (See Fig. 3 for an example of raw and preproc-
essed data).

Hoverboard control performance analysis.  We considered the number of trials at each condition and trial 
elapsed time, defined as the time taken to complete one trial, as the task performance measures since partici-
pants were asked to perform as many trials as they could in a minute. We used a Linear Mixed Model (LMM) to 
analyze the trial elapsed time and its reduction as a sign of motor learning in participants. We included the con-
dition (A1, B, and A2) and movement direction (forward and backward) as fixed-effect intercepts, and treated 
the trial number as a fixed slope. To account for the correlation of repeated measurements for each participant, 
a random intercept and slope with respect to the trial number were also considered. Thus, the trial elapsed time 
( Tim ) for a given observation i on participant m is modeled as

where β0 , β1 , ...β4 are the weights of fixed effects, while b0m and b1m are weights of random effects. The indicator 
variables Bi , A2i , and backwardi were set to one if observation i belonged to the respective condition or direction, 
otherwise they were set to zero. The slope variable triali was also equal to the trial number. Similarly, trialim and 
subim were set to the trial number and one, respectively, in case the observation i belonged to the participant m, 
otherwise were set to zero. ǫim captures the difference between the measured values ( Tim ) and the prediction of 
the model for participant m.The average relative change in trial elapsed time ( �Tm ) in each condition is then 
computed for participant m based on the average number of performed trials Navg,m in a condition and the 
average trial time ( Tavg,m ) as

(1)Tim = β0 + β1Bi + β2A2i + β3backwardi + β4triali + b0msubim + b1m(trialim, subim)+ εim
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This measure shows how much the trial elapsed time has decreased on average during a condition compared 
to its average value. For example, if the average trial elapsed time of a participant is 5 s, a �T of −10 % shows that 
the trial elapsed time has decreased by 0.5 s during each condition on average. We use this formula to convert 
the LMM estimations to relative average changes for a more tangible representation of the results.

EMG signal processing.  The muscle co-activation between muscles p and q in the trial i ( Ci
pq ), was computed as:

where ep and eq are the filtered, normalized EMG signals of muscles p and q, respectively. Setting p = q , we can 
compute the mean square muscle activation for each muscle. Among six different combinations of muscles for co-
activation calculation, only three of them are interpreted: C12 between Rectus Femoris and Gastrocnemius Medial 
Head, C13 between Bicep Femoris and Rectus Femoris, and C24 between Tibialis Anterior and Gastrocnemius 
Medial Head. C12 and C13 are related to the muscles that exert opposing torques at the knee joint. An increase in 
C12 and C13 , referred from henceforth as knee co-activation type 1 and 2, respectively, would increase the knee 
joint mechanical impedance. Similarly, we call C24 the ankle co-activation since it is related to the muscles that 
exert opposing torques on the ankle joint. C11 , C22 , C33 , and C44 are also the muscle activation of Bicep Femoris, 
Gastrocnemius Medial Head, Rectus Femoris, and Tibialis anterior, respectively. The total muscle activation was 
also computed as CTotal =

∑4
j=1 Cjj . Furthermore, to evaluate the effort and interaction of muscle activation and 

obtained speed during trial number i, we defined and used the measure

where vhb(t) is the hoverboard speed. W has a unit of energy if ep is calibrated to the force. W can approximate 
the energy of the system, and is an upper bound for the work as the ep forces are not in the direction of resultant 
vhb(t).

We fitted an LMM to each of muscle activation ( C11, . . . ,C44 ), co-activation ( C12 , C13 , and C24 ), the total mus-
cle activation ( CTotal ), and the system energy (W) to investigate motor learning. This model includes condition, 
leg, and movement direction as fixed intercepts. The interaction between condition and leg is also considered 
in the model in addition to a fixed slope for the trial number. Similar to the trial elapsed time model (Eq. 1), 
we considered random intercept and slope for capturing the correlation of measurements for each participant.

We also investigated the variations of total muscle activation with respect to each leg and condition. To focus 
on the mean value of the total activation in each condition and leg, we included only intercepts in the model. 
Fixed intercepts were considered for condition, leg and their interaction. Similar random effects were also con-
sidered to account for the correlation of repeated measurements for participants. Moreover, the average relative 
change in the system energy ( �Wm ), muscle activation ( �Cm ), and the total muscle activation ( �Cm

Total ) are 
computed similar to Eq. (2).

Balance strategy analysis.  To investigate how the hip and ankle balance strategies were adopted to control the 
hoverboard, the similarity between the hip and the ankle joints’ motion and the tilt angle of the hoverboard’s 
plates was evaluated (see Fig. 1A for the definition of angles). First, a range normalization was applied to all the 
trajectories within each condition due to different ranges of motion in the ankle, hip, and hoverboard plate angle 
(same as the foot angle). This was done by removing the mean value of each signal and dividing it by its maxi-
mum absolute value. Hoverboard motion is controlled with its plates orientation which is reflected in highly cor-
related hoverboard position in the y direction. We expect certain joint rotations contribute to these oscillations 
more dominantly according to the balance strategy. In contrast to studies that investigated the balance strategy in 
quiet standing using a 1-DOF independent moving platform11,12, we cannot use simple phase difference and gain 
analysis since the balance on the hoverboard is the outcome of the concurrent control of the hoverboard plates’ 
orientation and the hoverboard acceleration, which are controlled to maintain the balance and to perform back 
and forth motions. In addition, riding a hoverboard does not follow a fixed-frequency motion and depending 
on the intention of the rider, the hoverboard plates will move in a wide range of frequencies and possibly with 
variable time lags with respect to the joint angles. Hence, we used different similarity measures to account for the 
variability induced by the complexity of our task. To determine which joint has the greatest contribution to the 
control of the hoverboard plates’ orientation, three metrics were used, (1) maximum cross-correlation between 
joint angles and hoverboard plate orientation, (2) phase difference between signals, (3) the distance between the 
signals using Dynamic Time Warping (DTW).

The maximum cross-correlation between the hip and ankle angles with the foot angle was computed by 
shifting each of the ankle and hip angle profiles by their corresponding optimum lags ( �T∗ ). The use of cross-
correlation as the only similarity measure can be debatable due to the complexity of the task as the delay between 
angle profiles is not fixed over a condition, and therefore, using a fixed lag value would not be reliable for revealing 
the synchrony (Fig. 2A). Furthermore, the correlations of the ankle and the hip angles with foot tilt are computed 

(2)�Tm =

(β4 + b1m)× Navg,m

Tavg,m
× 100.

(3)Ci
pq =

∫ tiend
tistart

ep(t) eq(t) dt

tiend − tistart

Wi =

� tiend

tistart





4
�

p=1

ep(t)



 . |vhb(t)| dt
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at different optimum lags which can add uncertainty to the cross-correlation comparison. To address these 
limitations, we used the mentioned two other metrics since they account for time-varying lag between signals.

The instantaneous phase21 difference between the foot orientation and the ankle and the hip angles are 
estimated by means of Hilbert transform22. We checked if there was any constant phase difference between the 
signals, which is a sign of synchronization between their oscillations. Figure 2B shows a visual description of 
foot-ankle instantaneous phase difference evolution. To compare the phase difference of hip and ankle joints 
with respect to the foot orientation, we fitted separate LMMs to each of them. We assumed that the phase slope 
with respect to time indicates the synchrony of the joints with foot orientation. A significant slope indicates an 
asynchronous motion while a zero (or non-significant) slope indicates synchrony. We included the condition 
and leg as fixed effect intercepts. Sample time ( ti ) is treated as a fixed slope. The measured values ( φim ) for a given 
observation i on participant m is modeled as

A dynamic time warping (DTW) similarity measure23, which computes the spatial distance between signals 
regardless of their temporal differences, was also used to discriminate between the two balancing strategies. Since 
DTW is insensitive to shifts in the time domain, it is robust to phase shifts between two signals (see Fig. 2C). 
The DTW was computed between the foot orientation and the ankle or the hip angle. To track the changes of 
distance between the signals, we computed DTW locally within a moving window with length and steps of 33.34 s 
and 0.67 s, respectively. We fitted separate LMMs to each of the ankle and hip DTW data in order to compare 
each joint’s similarity to the foot orientation. Hence, the observation i for each computed distance (d) for the 
participant m is modeled as

where dim is the local distance between the observation i of hip or ankle joint from the foot orientation.
We adjusted the complexity of the LMMs by performing Log-likelihood Ratio Test and Akaike Information 

Criterion. The significance of each effect on the model was also tested using F-test at the 5 % significance level.

Results
Figure 3 shows the raw and the preprocessed kinematic data, including joint angles, foot orientation, and hover-
board position, and muscle activation in condition B for a representative participant #9 with an average perfor-
mance according to Table 1. A similarity can be seen between the hoverboard plate orientation (Fig. 3E) and ankle 
plantar flexion angle (Fig. 3D). For this participant, in condition B forward motion half trials, GMH (Fig. 3H) 
and RF (Fig. 3I) exhibit higher activities, while in backward motions the muscles are relatively less active.

Motor performance and motor learning.  We computed the performance of each participant by sum-
ming the number of completed trials in each condition (Table 1). We also evaluated the motor learning progress 
of each participant during each condition using the trial elapsed time and the total muscle activation. The system 
energy (W) is also considered as a measure of motor learning to capture the interaction effect of trial completion 
time and muscle effort.

Figure 4A,D illustrate the trial elapsed time and the Rectus Femoris activity for participant #9. Overall, a 
decrease in trial elapsed time and muscle activity can be observed as this participant performs more trials. In 
particular, Rectus Femoris muscle activity had a decreasing trend in the left leg during backward motion in 
condition B. To investigate the variations of motor learning indicators as a function of trial number, we fitted 
LMMs to the trial elapsed time and total muscle activation data, respectively. Both the trial elapsed time and the 

(4)φim = β0 + β1Bi + β2A2i + β3lefti + β4ti + b0msubim + b1m(tim, subim)+ εim.

(5)dim = β0 + β1Bi + β2A2i + b0msubim + b1m(Bi , subim)+ b2m(A2i , subim)+ εim

Figure 2.   (A) Aligning foot and ankle joint angle profiles by shifting the original ankle angle (gray line) by 
�T∗ to obtain maximum cross-correlation. The peaks of the ankle angle profile are not perfectly aligned. For 
example, at sample si shifted ankle angle is leading while at sample sj it is lagging behind the foot orientation. (B) 
An example of the instantaneous phase difference variation between the ankle and the foot angles with respect 
to time. (C) Aligning signal samples using dynamic time warping. In this method, instead of shifting the whole 
ankle angle by a constant value, samples of the ankle joint profile are mapped to the samples of the foot profile. 
For example, sample si , representing a peak in ankle angle, is mapped to samples sj to sj+2 since all those samples 
are representing the corresponding peak at the foot angle profile. The mapping is not injective and can thus 
account for variable delays between the signals.
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total muscle activation yielded significant negative slopes as a function of the trial number (F-test, ptime < 0.001 , 
pTotalEMG < 0.001 ). Figure 5F illustrates the average trial completion time change and the average total muscle 
activation change for each participant across conditions computed based on the values estimated by correspond-
ing LMMs. We then fitted an LMM to the individual muscle activation and co-activation data. Figure 5A shows 
negative average relative changes for most muscles ( �Cm ). Although the estimated slope is not significantly 
different from zero in the activity of each muscle and co-activation of muscle pairs, an overall decreasing trend 
in muscle activity is observed, indicative of motor learning. In particular, the ankle joint co-activation has a 
negative average relative change (F-test, pGMH_TA = 0.0092), signifying motor learning has occurred. Finally, we 
fitted an LLM model to the system energy to investigate the joint effect of muscle activation and trial elapsed 
time (Fig. 5G). Participants showed a 13 ± 19% reduction in system energy. That trend was not, however, found 
to be statistically significant (F-test, p = 0.2528). Comparing the number of completed trials, the elapsed time, 
and muscle activation time series across A–B–A conditions, we did not observe any sign of learning interference 
due to condition B.

Balance strategy.  As described, hoverboard balance is achieved by controlling the tilt angle of its plates. 
Oscillatory trajectories for the plates are to be expected during the forward and backward movements. This oscil-
latory behavior is not, however, equally mapped into each joint but is reflected mainly based on the adopted bal-
ance strategy. In other words, the foot orientation is simultaneously affected by the ankle, knee, and hip angles, 
so there is a multitude of ways to control the foot orientation.

Figure 3.   A typical raw and normalized time series of hoverboard centre position in x (A) and y (F) directions; 
(B) The hip, (C) knee, and (D) ankle angles; (E) the hoveboard plate orientation; (G) Bicep Femoris, (H) 
Gastrocnemius Medial Head, (I) Rectus Femoris, and (J) Tibialis Anterior muscle activation of the right leg in 
condition B for an average participant (#9). The blue area denotes the forward motion intervals. Value of the 
normalized signals are reported on the right axis of each figure.

Table 1.   Number of completed trials at each condition. Participants are sorted based on the total performed 
trials.

Participant # 7 4 8 10 9 6 1 2 5 Expert

A1 9 7 10 7 4 6 4 5 2 19

B 9 10 8 8 7 6 6 4 3 16

A2 11 12 9 8 9 6 5 5 4 19

Total Trials 29 29 27 23 20 18 15 14 9 54
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Figure 4.   Results of a representative participant (#9): (A) Trial elapsed time in forward and backward motion; 
(B) Maximum cross-correlation between the foot, and the ankle and hip angles for the right leg in each trial; 
(C) DTW distance between the right foot angle, and the ankle and hip angles; (D) Rectus Femoris activation 
in backward movement in each trial for the right leg; (E) The instantaneous phase difference ( �φ ) between 
the right foot profile, and the right ankle and hip angles for A1, B, and A2 conditions. The distance from the 
origin represents the sample time while the angle represents the phase difference ( �φ ). In all conditions, �φhip 
travels the whole phase circle several times. The �φankle . (F) Phase analysis for the expert participant who 
tried to control the hoverboard mostly with the hip. The ankle phase is still bounded in all conditions similar 
to the ankle strategy. The hip phase is also bounded in conditions A1 and A2 and has fewer variations even in 
condition B as a result of adopting hip or a multi-joint strategy.
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Figure 5.   (A) Average relative change ( �Cm ) for each activation and co-activation across participants. It 
shows the average reduction per condition relative to the average value. For example, if the mean activation of a 
muscle is 0.5, a �C of −10 % means that its activation has dropped about 0.05 in each condition on average. (B) 
Comparison of average estimated values of the DTW distance for the hip and ankle joints from the foot angle 
across participants in three conditions. (C) Comparison of foot and the ankle and hip joints maximum cross-
correlation across participants in three conditions. (D) Average total muscle activation in each condition and 
leg across participants. (E) Comparison of estimated phase slopes for the hip and ankle joints (the rate of phase 
change over sample time) across participants. (F) Comparison of the average relative change for trial elapse 
time ( �Tm ) and the total muscle activation ( �Cm

Total ) across participants. (G) average relative change of system 
energy ( �Wm ) across participants.
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Maximum cross‑correlation.  To investigate the contribution of the ankle and hip movements to the hoverboard 
tilt, we initially examined the maximum cross-correlation between the foot orientation and the ankle or hip angle 
profiles (see Figs. 4B and 5C). It was observed that the ankle joint delay from the foot orientation has less varia-
tion (0.7 ± 1.2 s) while the hip delay from foot orientation has a much larger standard deviation ( −0.2± 3.4 s). 
Results show significantly higher cross-correlation between the ankle and foot angles (0.69 ± 0.27, 0.63 ± 0.21, 
0.71 ± 0.22, in conditions A1, B and A2, respectively) compared to the hip and foot angles cross-correlation 
(0.3 ± 0.1, 0.28 ± 0.17, 0.26 ± 0.12, in conditions A1, B and A2, respectively, F-test, pA1 = 0.018 , pB = 0.002 , 
pA2 < 0.001 ) indicating an ankle strategy being adopted.

For a comparison with possible hip strategy, we performed the same cross-correlation analysis on an experi-
enced hoverboard rider when being asked to dominantly use their hip (simulated hip strategy) or ankle (simu-
lated ankle strategy) during the A1 condition. During simulated ankle strategy, a maximum cross-correlation 
of 0.63 and 0.42 were obtained for ankle–foot angle and hip–foot angle, respectively. While the ankle–foot 
angle maximum cross-correlation remained almost the same (0.64) for the simulated hip strategy, we observed 
a remarkable increase of hip–foot angle maximum cross-correlation (0.69).

Phase difference.  Figure 4E shows the phase difference for participant #9. The phase angle between the hip 
and the foot varies along with a wider range between 0 and 2π compared to the phase between the ankle and 
the foot, suggesting a stronger phase synchrony and the use of an ankle balancing strategy in conditions A1, B 
and A2. To determine whether other riders predominantly employed an ankle balancing strategy, we fitted the 
LMM in Eq. (4) to each of the ankle and hip joint phase difference data. Figure 5E shows the phase slope for 
the hip and ankle joints estimated by their corresponding models where the value of each point in the graph is 
equal to β4 + b1m . The phase slope of the hip joint is 15 times larger than the ankle joint and according to the 
performed F-test on both models, the slope fix effect does not significantly contribute to the ankle model (F-test, 
pβ4,ankle = 0.5706 ) while the opposite applies to the hip model where there exists a significant positive fix slope 
(F-test, pβ4,hip < 0.001 ). These observations show that a small phase difference with the foot angle is maintained 
at the ankle while the hip joint has not maintained such a bounded phase difference with the foot angle. There-
fore, the ankle joint moves in synchrony with the hoverboard’s plates, indicative of an ankle balancing strategy.

We also asked the expert participant to perform a similar goal-directed movement in the three conditions. We 
found that the expert has a higher phase slope in hip angle compared to the ankle angle. The contrast between 
the phase differences is greater compared to the experiment participants, indicating strong adoption of ankle 
strategy by the expert (see Fig. 5E). We then asked the expert participant to perform the same experiment, this 
time by using the hip joint mostly. Phase analysis of this scenario is illustrated in Fig. 4F. In contrast to the phase 
analysis of the ankle strategy (Fig. 4E), the hip strategy is emerged by smaller variations in the hip–foot phase 
differences while maintaining the same amount of ankle–foot phase variation.

DTW distance.  The Dynamic Time Warping distance was used to measure the distance between the ankle and 
hip angles and foot orientation. The DTW distance from a sample participant #9 is shown in Fig. 4C. The DTW 
distance is smaller between the ankle and foot compared with the foot and the hip in all three conditions.

We fitted separate LMMs to the DTW data based on Eq. (5). Figure 5B shows the overall distance of each of 
the ankle and hip joint angles from the hoverboard plates’ orientation. The results show that the hip joint angle 
has a significantly larger DTW distance from the foot angle in comparison to the ankle angles by 26%, 32%, and 
29% in A1, B, and A2 conditions (F-test, pA1 = 0.009 , pB = 0.003 , pA2 < 0.0001 ), respectively. DTW analysis 
of the data collected from the expert subject confirms the same conclusion. This indicates that participants used 
their ankles more than their hips in controlling the hoverboard plates.

Muscle activation.  This subsection investigates how the task condition, i.e., A1–B–A2 blocks with different 
foot orientations on the hoverboard, affected the muscle activity patterns and if condition B interferes with 
the balance strategy learned in A1 at the muscular level. In the fitted LMM model to the activation and co-
activation data, all of the fixed effects significantly contribute to the prediction of the response variable, but 
the predictor distinguishing between condition A1 and A2. This suggests that participants employed the same 
balancing strategy learned in A1 during A2. For further analysis, we computed the total muscle activation and 
fitted another LMM model to the total activation data. Figure 5D shows the mean value for each participant’s 
total activation in different conditions and legs. The estimated total activation in condition B is significantly dif-
ferent from conditions A1 and A2 for both legs (F-test, pA1R,BR = 0.0088 , pA2R,BR = 0.0294 , pA1L,BL = 0.0074 , 
pA2L,BL = 0.0047 ), while conditions A1 and A2 do not have a significant difference in activation/co-activation 
(F-test, pA1R,A2R = 0.3665 , pA1L,A2L = 0.7050 ), implying a difference in the strategy used in conditions A1/A2 
and condition B. Total muscle activation data collected from the expert participant also confirms the same pat-
tern.

Discussion
Motor learning.  We observed in Fig. 5F that the time taken to complete one trial decreased by 10.56± 4.10% 
(mean±SEM). Does this improvement come at the cost of increased effort? The system energy (analyzed using W, 
which is an upper bound for mechanical work) did not increase in the majority of our participants (Fig. 5G, 
the energy decreased by 10–45% in six participants, and increased by 5–10% in 3 participants), and muscle 
activation decreased across all subjects by 24.23± 11.26% . Co-activation is further intrinsic  indicator that is 
larger at the early stages of learning especially in unstable tasks like balancing24. Large co-activation enables 
the motor system to keep the movement trajectory close to the planned one until the feedforward control of 
muscle activation is learned, gradually replacing the high feedback gains25. Our hoverboard riders initially had 
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large co-activation in the ankle joint that decreased with the trial number, eventually lowering by 14.20± 5.68% 
(Fig. 5A). A limitation of this study concerning the motor learning of hoverboard riding is that participants were 
not totally naive to the hoverboard at the beginning of the experiment as they received some practice during the 
familiarization phase. However, this could not be avoided as the rider’s safety was of primary concern. We could 
not ask participants who had never ridden a hoverboard to balance on it whilst moving forwards and backwards 
rapidly. While the analysis of motor learning during the familiarization phase has been omitted in our study, the 
reduction in the co-activation during the main experiment suggests that the motor learning was not complete 
prior to the experiment. Having the familiarization phase also helped us reduce the effect of fear and consequent 
muscle reflexes which could affect the total activation measure. Frequency analysis also confirms negligible 
fatigue during the experiment. Therefore, we considered the decrease of muscle activation to be mainly due to 
motor learning.

Balance strategy.  Maximum cross-correlation, phase difference evaluation and DTW distance analysis all 
suggest the adoption of an ankle strategy (dominant ankle role in the control of hoverboard). Analysis of the 
data collected from the expert participant shows similar patterns as those observed in the data collected from 
experiment participants in terms of maximum cross-correlation, phase slope, DTW, and muscle activation all 
of which indicate the use of the ankle strategy. When the expert participant utilized a hip strategy, we observed 
an increased maximum cross-correlation between hip angle and foot angle, and a reduced variation of hip–foot 
phase difference. Control of the ankle–foot phase difference might be essential for efficient control of the hover-
board regardless of the balance strategy judging by this expert’s data.

Robustness of adopted balance strategy.  An A–B–A paradigm was used in this study to investigate 
if the adoption of a balance strategy depends on the participants’ initial posture, and to verify the robustness of 
the learned motor control when asked to balance on the hoverboard using a different foot posture (condition 
B where the feet pointed rightwards, not leftwards as in conditions A1 and A2). According to Fig. 5D, the total 
muscle activation in condition B is different from the A1 and A2. Participants also found it difficult to perform 
trials at the beginning of condition B, as indicated by the increased elapsed time and curved spatial trajectories 
of the hoverboard. These results suggest that condition B required a riding strategy different from conditions 
A1 and A2. However, the balancing strategy of using the ankles to control the foot angle (or the tilt in the hov-
erboard plates) remained robust across conditions as the phase difference between the ankle and the foot was 
always smaller than between the hip and the foot.

Condition B was designed to best interfere with the motor learning/memory of the balancing strategy acquired 
in condition A1. An interference would be detected if the muscle activity during A2 was significantly different 
from what was observed earlier in the same condition A1 (in both cases the feet point leftwards). However, we 
could not discern any difference in the muscle activation patterns between conditions A1 and A2. This may sug-
gest that participants acquired a novel motor memory in condition B, which enabled them to switch between 
conditions A and B without interference. The parallel acquisition of two motor memories has been observed 
in reaching studies, but only when a unique sensorimotor cue is given to participants in each condition26. The 
different foot orientation (left in A and right in B) could have provided the necessary condition to enable our 
participants to learn separate motor memories in each condition without interference. This is more visible with 
the experienced participant (Fig. 6C) where their left leg muscle activation pattern in condition B is similar to 
the right leg muscle activation patterns in A1 and A2, and vice versa. Another possibility is that the duration of 
condition B was not sufficiently long to interfere with the motor memory of condition A.

A B C

Figure 6.   Average muscle activation (co-activation) patterns normalized to the maximum observed muscle 
activation in each leg separated based on movement direction, leg, and condition for (A) LP group, (B) HP 
group, and (C) the expert participant. The right leg muscles are more activated/co-activated in A1 and A2 
conditions and the left muscles are more engaged in condition B. Muscle activation patterns are different along 
HP and LP groups. LP group tend to activate/co-activate more muscles (which lead to more bright squares 
in their checker plot) while the HP group exploit only one or at max two muscle of their leg similar to the 
expert subject (one square is super bright and the others are almost dark). This can confirm that the HP group 
participants have converged (learned) to a muscle activation pattern that decreases the muscle co-activation.
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High and low performance groups.  A positive correlation was found between the strength of the adopted 
ankle balance strategy and the performance of the participant. K-means clustering was applied to the number 
of successful trials across conditions, which divided the participants into two groups of high performance (HP) 
and low performance (LP) (Group HP: participants number 4, 7, 8, 9, and 10). Based on a comparison of features 
such as the standard deviation of the instantaneous phase, and the average distance between the ankle and hip 
angle trajectories, we observed that the HP group shows a stronger preference in using the ankle balance strat-
egy in comparison to the LP group. Although the ankle strategy is dominant in HP group, as we did not record 
the trunk angle during the experiments, it is not clear to what extent the trunk posture contributed to control 
of the COG and the hoverboard plate tilt. The ankle co-activation was also lower in the HP group24. Interest-
ingly, the used energy metric could also discriminate between HP and LP participants. According to Fig. 5F, LP 
participants had a negligible decrease in the energy, while in HP participants it dropped between 20 and 45% 
(participant #4 was an exception who did not exhibit a considerable reduction in energy). This may indicate that 
advanced hoverboard riders have a stronger tendency to maintain balance using their ankles.

The participants’ muscle recruitment patterns can be further analyzed. Figure 6A,B represent the muscle 
activation and co-activation computed by Eq. (3). Each tile is normalized to the maximum activation observed 
across muscles of each leg. As we see in these figures, the right leg’s muscles are more active in A1 and A2 con-
ditions while the left leg’s muscles are more active in condition B. This is expected since in conditions A1 and 
A2, where the feet are oriented to the left, the right foot has a smaller moment arm when applying torque to 
the plate (see Fig. 1) so more force is required on the hoverboard’s right plate. Hence, more activity in the right 
leg is observed. The opposite is true for condition B. Therefore, the right leg exhibits higher muscle activation 
in balance control in A1 and A2 conditions while the left leg is more engaged in condition B. Furthermore, we 
observed that HP participants tend to activate a lower number of muscles simultaneously while the LP group 
recruit more muscles. This could be a determinant of lower co-activation in HP participants in comparison to 
the LP participants and a sign of less efficient control in the LP group.

Kinematic measures and performance metrics.  We evaluated participants’ performance based on 
various kinematic metrics such as maximum perpendicular deviation, maximum line crossing error, average 
hoverboard orientation, and line crossing angles but none of them were able to discriminate participants in a 
meaningful way. The underlying reason is the complexity and redundancy of hoverboard control, which could be 
improved through more efficient movements, but may not necessarily manifest itself as a reduction in kinematic 
error. A possible explanation is that the duration of the experiment was insufficient for a significant learning to 
occur specific to optimize the hoverboard trajectory. The sensorimotor system may have prioritized balance and 
more efficient use of metabolic resources rather than attempting to move the hoverboard along a straight line.

Conclusion
This work investigated the learning of lower limb motor control and the emergent dynamic balance strategy in 
first-time hoverboard riders. Ten participants were asked to perform goal-oriented back and forth movements on 
a hoverboard in three tests, with each trial lasting for 60 s. Decreased total muscle activation, elapsed trial time, 
and ankle-level muscle co-activation over the performed trials indicated motor learning. The analysis of the 
maximum cross-correlation, phase synchrony and DTW distance showed the dominant contribution of the ankle 
in control of hoverboard (an ankle balance strategy). The learned ankle strategy was robust to performing the 
task with a different foot orientation (either pointing left or right). Further analysis suggested that the strength 
of the ankle strategy correlates with the performance of the participants. Additional investigation could clarify 
whether distinct motor memories were learned in the two conditions.
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