Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Managing nitrogen legacies to accelerate water quality improvement

Abstract

Increasing incidences of eutrophication and groundwater quality impairment from agricultural nitrogen pollution are threatening humans and ecosystem health. Minimal improvements in water quality have been achieved despite billions of dollars invested in conservation measures worldwide. Such apparent failures can be attributed in part to legacy nitrogen that has accumulated over decades of agricultural intensification and that can lead to time lags in water quality improvement. Here, we identify the key knowledge gaps related to landscape nitrogen legacies and propose approaches to manage and improve water quality, given the presence of these legacies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time lines of policy measures and hypoxic-zone size reveal lack of response to policy interventions across Europe and North America.
Fig. 2: Transport and retention of N across human-impacted landscapes.
Fig. 3: Relationships between stream N loads and watershed net N inputs.
Fig. 4: Strategies for solving the legacy N problem.

Similar content being viewed by others

Data availability

Datasets for this research have been previously published13,26,41,80,84,85,86,87,89,91,92,94,95. All other data are available upon request.

References

  1. Diaz, R. J. & Rosenberg, R. Introduction to environmental and economic consequences of hypoxia. Int. J. Water Resour. Dev. 27, 71–82 (2011).

    Article  Google Scholar 

  2. Glibert, P. M., Maranger, R., Sobota, D. J. & Bouwman, L. The Haber Bosch–harmful algal bloom (HB–HAB) link. Environ. Res. Lett. 9, 105001 (2014).

    Article  Google Scholar 

  3. Sutton, M. A. et al. (eds) The European Nitrogen Assessment (Cambridge Univ. Press, 2011); http://www.nine-esf.org/node/360/ENA-Book.html

  4. Basu, N. B. et al. Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophys. Res. Lett. 37, L23404 (2010).

    Article  Google Scholar 

  5. Gobler, C. J. Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91, 101731 (2020).

    Article  Google Scholar 

  6. Wurtsbaugh, W. A., Paerl, H. W. & Dodds, W. K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 6, 706 (2019).

    Article  Google Scholar 

  7. D’Elia, C. F., Bidjerano, M. & Wheeler, T. B. in Coasts and Estuaries (eds Wolanski, E., Day, J. W., Elliott, M. and Ramachandran, R.) 293–310 (Elsevier, 2019).

  8. Iho, A., Ribaudo, M. & Hyytiäinen, K. Water protection in the Baltic Sea and the Chesapeake Bay: institutions, policies and efficiency. Mar. Pollut. Bull. 93, 81–93 (2015).

    Article  Google Scholar 

  9. Rabotyagov, S. S., Kling, C. L. & Gassman, P. W. The economics of dead zones: causes, impacts, policy challenges, and a mode of the Gulf of Mexico hypoxic zone. Rev. Environ. Econ. Policy https://doi.org/10.1093/reep/ret024 (2014).

  10. Le Moal, M. et al. Eutrophication: a new wine in an old bottle? Sci. Total Environ. 651, 1–11 (2019).

    Article  Google Scholar 

  11. Karydis, M. & Kitsiou, D. Eutrophication and environmental policy in the Mediterranean Sea: a review. Environ. Monit. Assess. 184, 4931–4984 (2012).

    Article  Google Scholar 

  12. Linke, S., Gilek, M., Karlsson, M. & Udovyk, O. Unravelling science–policy interactions in environmental risk governance of the Baltic Sea: comparing fisheries and eutrophication. J. Risk Res. 17, 505–523 (2014).

    Article  Google Scholar 

  13. Van Meter, K. J., Van Cappellen, P. & Basu, N. B. Response to comment on ‘Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico’. Science 365, eaau8401 (2019).

    Article  Google Scholar 

  14. Van Meter, K. J., Van Cappellen, P. & Basu, N. B. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 360, 427–430 (2018).

    Article  Google Scholar 

  15. Destouni, G., Fischer, I. & Prieto, C. Water quality and ecosystem management: data-driven reality check of effects in streams and lakes. Water Resour. Res. 53, 6395–6406 (2017).

    Article  Google Scholar 

  16. Meals, D. W., Dressing, S. A. & Davenport, T. E. Lag time in water quality response to best management practices: a review. J. Environ. Qual. 39, 85–96 (2010).

    Article  Google Scholar 

  17. Backer, H. et al. HELCOM Baltic Sea Action Plan–a regional programme of measures for the marine environment based on the ecosystem approach. Mar. Pollut. Bull. 60, 642–649 (2010).

    Article  Google Scholar 

  18. Gren, I.-M. & Destouni, G. Does divergence of nutrient load measurements matter for successful mitigation of marine eutrophication? AMBIO 41, 151–160 (2012).

    Article  Google Scholar 

  19. Baltic Sea Action Plan (HELCOM, 2007).

  20. The Nitrates Directive 1991/676/EEC (European Commission,1991).

  21. Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy (European Environment Agency, 2020).

  22. Diaz, R., Selman M. & Chique C. Global Eutrophic and Hypoxic Coastal Systems (World Resources Institute, 2011); https://datasets.wri.org/dataset/eutrophication-hypoxia-map-data-set

  23. Boesch, D. F. Barriers and bridges in abating coastal eutrophication. Front. Mar. Sci. 6, 123 (2019).

    Article  Google Scholar 

  24. Secchi, S. & Mcdonald, M. The state of water quality strategies in the Mississippi River basin: is cooperative federalism working? Sci. Total Environ. 677, 241–249 (2019).

    Article  Google Scholar 

  25. Prokopy, L. S. et al. The urgency of transforming the Midwestern US landscape into more than corn and soybean. Agric. Human Values 37, 537–539 (2020).

    Article  Google Scholar 

  26. Van Meter, K. J., Basu, N. B. & Van Cappellen, P. Two centuries of nitrogen dynamics: legacy sources and sinks in the Mississippi and Susquehanna river basins. Glob. Biogeochem. Cycles 31, 2016GB005498 (2017).

    Google Scholar 

  27. Van Meter, K. J. & Basu, N. B. Catchment legacies and time lags: a parsimonious watershed model to predict the effects of legacy storage on nitrogen export. PLoS ONE 10, e0125971 (2015).

    Article  Google Scholar 

  28. Ardón, M., Helton, A. M., Scheuerell, M. D. & Bernhardt, E. S. Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration. Elementa https://doi.org/10.1525/elementa.236 (2017).

  29. Puckett, L. J., Tesoriero, A. J. & Dubrovsky, N. M. Nitrogen contamination of surficial aquifers—a growing legacy. Environ. Sci. Technol. 45, 839–844 (2011).

    Article  Google Scholar 

  30. Poffenbarger, H. J. et al. Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agric. Ecosyst. Environ. 265, 544–555 (2018).

    Article  Google Scholar 

  31. Ascott, M. J. et al. Global patterns of nitrate storage in the vadose zone. Nat. Commun. 8, 1416 (2017).

    Article  Google Scholar 

  32. Vero, S. E. et al. The environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeol. J. 26, 7–22 (2017).

  33. Tesoriero, A. J., Duff, J. H., Saad, D. A., Spahr, N. E. & Wolock, D. M. Vulnerability of streams to legacy nitrate sources. Environ. Sci. Technol. 47, 3623–3629 (2013).

    Article  Google Scholar 

  34. Rudolph, D. L. Groundwater quality within the agricultural landscape: assessing the performance of nutrient BMPs. Ground Water Monit. Remediat. 35, 21–22 (2015).

    Article  Google Scholar 

  35. Van Meter, K. J., Basu, N. B., Veenstra, J. J. & Burras, C. L. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett. 11, 035014 (2016).

    Article  Google Scholar 

  36. Akbarzadeh, Z., Maavara, T., Slowinski, S. & Van Cappellen, P. Effects of damming on river nitrogen fluxes: a global analysis. Glob. Biogeochem. Cycles 33, 1339–1357 (2019).

    Article  Google Scholar 

  37. Darracq, A., Lindgren, G. & Destouni, G. Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins. Global Biogeochem. Cycles 22 (2008).

  38. van Egmond, K., Bresser, T. & Bouwman, L. The European nitrogen case. Ambio 31, 72–78 (2002).

    Article  Google Scholar 

  39. van Van Breemen, N. et al. Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57, 267–293 (2002).

    Article  Google Scholar 

  40. Howarth, R. W., Boyer, E. W., Pabich, W. J. & Galloway, J. N. Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 31, 88–96 (2002).

    Article  Google Scholar 

  41. Howden, N. J. K., Burt, T. P., Worrall, F., Whelan, M. J. & Bieroza, M. Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible? Hydrol. Process. 24, 2657–2662 (2010).

    Article  Google Scholar 

  42. Boland-Brien, S. J., Basu, N. B. & Schilling, K. E. Homogenization of spatial patterns of hydrologic response in artificially drained agricultural catchments. Hydrol. Process. 28, 5010–5020 (2014).

    Article  Google Scholar 

  43. Sloan, B. P., Basu, N. B. & Mantilla, R. Hydrologic impacts of subsurface drainage at the field scale: climate, landscape and anthropogenic controls. Agric. Water Manage. 165, 1–10 (2016).

  44. Schilling, K. E., Jindal, P., Basu, N. B. & Helmers, M. J. Impact of artificial subsurface drainage on groundwater travel times and baseflow discharge in an agricultural watershed, Iowa (USA). Hydrol. Process. 26, 3092–3100 (2012).

    Article  Google Scholar 

  45. Hong, B. et al. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol. Modell. 227, 117–135 (2012).

    Article  Google Scholar 

  46. Boyer, E. W., Goodale, C. L., Jaworski, N. A. & Howarth, R. W. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57, 137–169 (2002).

    Article  Google Scholar 

  47. Howarth, R. W. et al. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front. Ecol. Environ. 10, 37–43 (2012).

    Article  Google Scholar 

  48. Van Meter, K. J. & Basu, N. B. Time lags in watershed-scale nutrient transport: an exploration of dominant controls. Environ. Res. Lett. 12, 084017 (2017).

    Article  Google Scholar 

  49. Chen, D. et al. Legacy nutrient dynamics at the watershed scale: principles, modeling, and implications. Adv. Agron. 149, 237–313 (2018).

    Article  Google Scholar 

  50. Wellen, C., Kamran-Disfani, A.-R. & Arhonditsis, G. B. Evaluation of the current state of distributed watershed nutrient water quality modeling. Environ. Sci. Technol. 49, 3278–3290 (2015).

    Article  Google Scholar 

  51. Wit, M. J. Mde Nutrient fluxes at the river basin scale. I: the PolFlow model. Hydrol. Process. 15, 743–759 (2001).

    Article  Google Scholar 

  52. Rabotyagov, S. S. et al. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone. Proc. Natl Acad. Sci. USA 111, 18530–18535 (2014).

    Article  Google Scholar 

  53. McIsaac, G. F., David, M. B., Gertner, G. Z. & Goolsby, D. A. Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: a comparison of approaches. J. Environ. Qual. 31, 1610–1622 (2002).

    Article  Google Scholar 

  54. Chen, F. et al. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. J. Geophys. Res. Biogeosci. 121, 451–465 (2016).

    Article  Google Scholar 

  55. Chang, S. Y., Zhang, Q., Byrnes, D. K., Basu, N. B. & Van Meter, K. J. Chesapeake legacies: the importance of legacy nitrogen to improving Chesapeake Bay water quality. Environ. Res. Lett. 16, 085002 (2021).

    Article  Google Scholar 

  56. Van Meter, K. J. et al. Beyond the mass balance: watershed phosphorus legacies and the evolution of the current water quality policy challenge. Water Resour. Res. 57 (2021).

  57. Wang, L. et al. Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. Hydrol. Process. 26, 226–239 (2012).

    Article  Google Scholar 

  58. Lee, M., Shevliakova, E., Malyshev, S., Milly, P. C. D. & Jaffé, P. R. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk. Geophys. Res. Lett. 43, 7520–7528 (2016).

    Article  Google Scholar 

  59. Ilampooranan, I., Van Meter, K. J. & Basu, N. B. A race against time: modeling time lags in watershed response. Water Resour. Res. 55, 3941–3959 (2019).

    Article  Google Scholar 

  60. Guillaumot, L. et al. A hillslope-scale aquifer-model to determine past agricultural legacy and future nitrate concentrations in rivers. Sci. Total Environ 800, 149216 (2021).

    Article  Google Scholar 

  61. Keiser, D. A., Kling, C. L. & Shapiro, J. S. The low but uncertain measured benefits of US water quality policy. Proc. Natl Acad. Sci. USA 116, 5262–5269 (2019).

    Article  Google Scholar 

  62. Keiser, D. A. & Shapiro, J. S. Consequences of the Clean Water Act and the demand for water quality. Q. J. Econ. 134, 349–396 (2019).

    Article  Google Scholar 

  63. Sprague, L. A. & Gronberg, J. A. M. Relating management practices and nutrient export in agricultural watersheds of the United States. J. Environ. Qual. 41, 1939–1950 (2012).

    Article  Google Scholar 

  64. Zabel, T., Milne, I. & Mckay, G. Approaches adopted by the European Union and selected Member States for the control of urban pollution. Urban Water 3, 25–32 (2001).

    Article  Google Scholar 

  65. Booth, L. & Quinn, F. Twenty-five years of the Canada Water Act. Can. Water Resour. J. 20, 65–90 (1995).

    Article  Google Scholar 

  66. Liu, Y. Phosphorus Flows in China: Physical Profiles and Environmental Regulation. PhD thesis, Wageningen Univ. (2005).

  67. Jacobsen, B. H., Anker, H. T. & Baaner, L. Implementing the water framework directive in Denmark—lessons on agricultural measures from a legal and regulatory perspective. Land Use Policy 67, 98–106 (2017).

    Article  Google Scholar 

  68. Ascott, M. J. et al. The need to integrate legacy nitrogen storage dynamics and time lags into policy and practice. Sci. Total Environ 781, 146698 (2021).

    Article  Google Scholar 

  69. Yan, M., Pan, G., Lavallee, J. M. & Conant, R. T. Rethinking sources of nitrogen to cereal crops. Glob. Change Biol. 26, 191–199 (2020).

    Article  Google Scholar 

  70. Rudolph, D. L., Devlin, J. F. & Bekeris, L. Challenges and a strategy for agricultural BMP monitoring and remediation of nitrate contamination in unconsolidated aquifers. Ground Water Monit. Remediat. 35, 97–109 (2015).

    Article  Google Scholar 

  71. Dalgaard, T. et al. Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. Environ. Res. Lett. 9, 115002 (2014).

    Article  Google Scholar 

  72. Eagle, A. J., Olander, L. P., Locklier, K. L., Heffernan, J. B. & Bernhardt, E. S. Fertilizer management and environmental factors drive N2O and NO3 losses in corn: a meta-analysis. Soil Sci. Soc. Am. J. 81, 1191–1202 (2017).

    Article  Google Scholar 

  73. Khanna, M., Gramig, B. M., DeLucia, E. H., Cai, X. & Kumar, P. Harnessing emerging technologies to reduce Gulf hypoxia. Nat. Sustain. 2, 889–891 (2019).

  74. Cheng, F. Y., Van Meter, K. J., Byrnes, D. K. & Basu, N. B. Maximizing US nitrate removal through wetland protection and restoration. Nature https://doi.org/10.1038/s41586-020-03042-5 (2020).

  75. Qiu, J., Wardropper, C. B., Rissman, A. R. & Turner, M. G. Spatial fit between water quality policies and hydrologic ecosystem services in an urbanizing agricultural landscape. Landsc. Ecol. 32, 59–75 (2017).

    Article  Google Scholar 

  76. Jacobsen, B. H. & Hansen, A. L. Economic gains from targeted measures related to non-point pollution in agriculture based on detailed nitrate reduction maps. Sci. Total Environ. 556, 264–275 (2016).

    Article  Google Scholar 

  77. Destouni, G. & Jarsjö, J. Zones of untreatable water pollution call for better appreciation of mitigation limits and opportunities. WIREs Water 5, e1312 (2018).

    Article  Google Scholar 

  78. Hansen, A. T. et al. Integrated assessment modeling reveals near-channel management as cost-effective to improve water quality in agricultural watersheds. Proc. Natl Acad. Sci. USA 118, e2024912118 (2021).

    Article  Google Scholar 

  79. Cheng, F. Y. & Basu, N. B. Biogeochemical hotspots: role of small water bodies in landscape nutrient processing. Water Resour. Res. 53, 5038–5056 (2017).

    Article  Google Scholar 

  80. Early June 2019 Hypoxia Report (Maryland Department of Natural Resources, 2019); https://news.maryland.gov/dnr/2019/06/27/early-june-2019-hypoxia-report/

  81. Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2015 Report to Congress (EPA, 2015).

  82. Hypoxia Task Force 2001 Action Plan (EPA, 2001).

  83. Reckhow, K. H. et al. Achieving Nutrient and Sediment Reduction Goals in the Chesapeake Bay: An Evaluation of Program Strategies and Implementation (National Academies Press, 2011).

  84. Savchuk, O. P. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 5, 95 (2018).

    Article  Google Scholar 

  85. Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl Acad. Sci. USA 111, 5628–5633 (2014).

    Article  Google Scholar 

  86. Northern Gulf of Mexico Hypoxic Zone (EPA, 2020).

  87. Swaney, D. P., Hong, B., Ti, C., Howarth, R. W. & Humborg, C. Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: a brief overview. Curr. Opin. Environ. Sustain. 4, 203–211 (2012).

    Article  Google Scholar 

  88. Oelsner, G. P. et al. Water-Quality Trends in the Nation’s Rivers and Streams, 1972–2012—Data Preparation, Statistical Methods, and Trend Results (USGS, 2017); https://doi.org/10.3133/sir20175006

  89. Goyette, J.-O., Bennett, E. M., Howarth, R. W. & Maranger, R. Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export. Glob. Biogeochem. Cycles 30, 1000–1014 (2016).

    Article  Google Scholar 

  90. De Cicco, L.A. et al. Water-quality and streamflow datasets used in the Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2012 (ver. 1.1 July 7, 2017) (USGS, 2017); https://doi.org/10.5066/F7KW5D4H

  91. Bouraoui, F. & Grizzetti, B. Long term change of nutrient concentrations of rivers discharging in European seas. Sci. Total Environ. 409, 4899–4916 (2011).

    Article  Google Scholar 

  92. Chen, D., Huang, H., Hu, M. & Dahlgren, R. A. Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics. Environ. Sci. Technol. 48, 5683–5690 (2014).

    Article  Google Scholar 

  93. Jensen, P. N. (ed.) Estimation of Nitrogen Concentrations from Root Zone to Marine Areas Around the Year 1900 Scientific Report No. 241 (Danish Centre for Environment and Energy, 2017).

  94. Liu, J., Van Meter, K. J., McLeod, M. M. & Basu, N. B. Checkered landscapes: hydrologic and biogeochemical nitrogen legacies along the river continuum. Environ. Res. Lett. 16, 115006 (2021).

    Article  Google Scholar 

  95. Byrnes, D. K., Van Meter, K. J. & Basu, N. B. Trajectories Nutrient Dataset for Nitrogen (TREND-nitrogen) (PANGAEA, 2020); https://doi.org/10.1594/PANGAEA.917583

  96. Byrnes, D. K., Van Meter, K. J., & Basu, N. B. Long-term shifts in U.S. nitrogen sources and sinks revealed by the new TREND-nitrogen data set (1930–2017) Global Biogeochem. Cycles 34, e2020GB006626 (2020).

  97. Sousa, M. R., Jones, J. P., Frind, E. O. & Rudolph, D. L. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor. J. Contam. Hydrol. 144, 138–151 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed in part through Natural Sciences and Engineering Research Council of Canada (NSERC) in the frame of the collaborative Water JPI international consortium pilot call under the project name ‘Legacies of Agricultural Pollutants (LEAP): Integrated Assessment of Biophysical and Socioeconomic Controls on Water Quality Agroecosystems’ (N.B.B., K.J.V.M., R. Brouwer, R. Bhattacharya, M.C.C., G.D., B.H.J., J.J., S.B.O. and P.V.C.) and by Lake Futures Project under the Global Water Futures umbrella, and provided through the Canada First Research Excellence Fund (N.B.B., P.V.C., R. Brouwer and R. Bhattacharya). N.B.B. was also supported by a University Research Chair appointment and by an NSERC Discovery Grant. K.J.V.M. was also supported by startup funds at The Pennsylvania State University. D.K.B. was supported by the NSERC Alexander Graham Bell Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

N.B.B. conceptualized the project, wrote the first draft, edited the paper and acquired the funding. K.J.V.M. conceptualized the project, edited the draft and wrote sections, contributed materials/analysis tools and analysed data. D.K.B. contributed materials/analysis tools, analysed data and edited the draft. P.V.C., R. Brouwer, G.D., J.J., R. Bhattacharya, B.H.J., M.C.C., G.D., N.N., S.B.O. and D.L.R. edited the draft. P.V.C. and N.B.B. acquired funding.

Corresponding author

Correspondence to Nandita B. Basu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Emily Bernhardt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, N.B., Van Meter, K.J., Byrnes, D.K. et al. Managing nitrogen legacies to accelerate water quality improvement. Nat. Geosci. 15, 97–105 (2022). https://doi.org/10.1038/s41561-021-00889-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00889-9

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene